|
--- |
|
license: apache-2.0 |
|
base_model: facebook/convnextv2-tiny-1k-224 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: convnextv2-tiny-1k-224-finetuned-hand-final |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# convnextv2-tiny-1k-224-finetuned-hand-final |
|
|
|
This model is a fine-tuned version of [facebook/convnextv2-tiny-1k-224](https://huggingface.co/facebook/convnextv2-tiny-1k-224) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6638 |
|
- Accuracy: 0.7563 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 256 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 25 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 0.6669 | 1.0 | 14 | 0.6050 | 0.6834 | |
|
| 0.5796 | 2.0 | 28 | 0.5599 | 0.7362 | |
|
| 0.5417 | 3.0 | 42 | 0.5486 | 0.7437 | |
|
| 0.5466 | 4.0 | 56 | 0.5528 | 0.7387 | |
|
| 0.5213 | 5.0 | 70 | 0.5673 | 0.7462 | |
|
| 0.493 | 6.0 | 84 | 0.5432 | 0.7613 | |
|
| 0.5051 | 7.0 | 98 | 0.5457 | 0.7513 | |
|
| 0.4656 | 8.0 | 112 | 0.5444 | 0.7563 | |
|
| 0.4399 | 9.0 | 126 | 0.5430 | 0.7613 | |
|
| 0.4213 | 10.0 | 140 | 0.5507 | 0.7613 | |
|
| 0.4118 | 11.0 | 154 | 0.5619 | 0.7538 | |
|
| 0.4015 | 12.0 | 168 | 0.5383 | 0.7513 | |
|
| 0.3785 | 13.0 | 182 | 0.5567 | 0.7563 | |
|
| 0.3487 | 14.0 | 196 | 0.5972 | 0.7462 | |
|
| 0.3401 | 15.0 | 210 | 0.6059 | 0.7462 | |
|
| 0.3215 | 16.0 | 224 | 0.6051 | 0.7563 | |
|
| 0.3171 | 17.0 | 238 | 0.6228 | 0.7513 | |
|
| 0.2971 | 18.0 | 252 | 0.6529 | 0.7563 | |
|
| 0.3111 | 19.0 | 266 | 0.6309 | 0.7588 | |
|
| 0.2722 | 20.0 | 280 | 0.6444 | 0.7588 | |
|
| 0.2677 | 21.0 | 294 | 0.6373 | 0.7588 | |
|
| 0.2721 | 22.0 | 308 | 0.6393 | 0.7538 | |
|
| 0.2694 | 23.0 | 322 | 0.6382 | 0.7613 | |
|
| 0.2731 | 24.0 | 336 | 0.6543 | 0.7613 | |
|
| 0.257 | 25.0 | 350 | 0.6638 | 0.7563 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.0 |
|
- Pytorch 2.0.0 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.13.3 |
|
|