metadata
license: cc-by-4.0
base_model: kxx-kkk/FYP_sq2_mrqa_adqa_synqa
tags:
- generated_from_trainer
model-index:
- name: FYP_qa_final
results:
- task:
type: question-answering
name: Question Answering
dataset:
name: squad_v2
type: squad_v2
config: squad_v2
split: validation
metrics:
- type: exact_match
value: 82.3
name: Exact Match
- type: f1
value: 85.7701063996245
name: F1
- task:
type: question-answering
name: Question Answering
dataset:
name: squad
type: squad
config: plain_text
split: validation
metrics:
- type: exact_match
value: 89.9
name: Exact Match
- type: f1
value: 93.57935153408677
name: F1
datasets:
- rajpurkar/squad_v2
- mrqa
- UCLNLP/adversarial_qa
- mbartolo/synQA
language:
- en
pipeline_tag: question-answering
FYP_qa_final
This model is a fine-tuned version of deepset/deberta-v3-base-squad2 on an MRQA dataset. It achieves the following results on the evaluation set:
- Loss: 2.7493
Model description
This model is trained for performing extractive question-answering tasks for academic essays.
Intended uses & limitations
More information needed
Training and evaluation data
The dataset used for training is listed below according to training sequences:
Training procedure
The training approach uses the fine-tuning approach of transfer learning on the pre-trained model to perform NLP QA tasks. Each time a model was trained with one dataset only and saved as the PTMs for the next training. This model is the last model that trained with MRQA(test split).
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.8084 | 0.48 | 300 | 3.1468 |
2.5707 | 0.96 | 600 | 2.9035 |
2.5187 | 1.44 | 900 | 2.7175 |
2.4463 | 1.91 | 1200 | 2.7497 |
2.4328 | 2.39 | 1500 | 2.7229 |
2.3839 | 2.87 | 1800 | 2.7493 |
Framework versions
- Transformers 4.39.3
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2