(주)미디어그룹사람과숲과 (주)마커의 LLM 연구 컨소시엄에서 개발된 모델입니다
The license is cc-by-nc-sa-4.0
.
KoT-platypus2
CoT + KO-platypus2 = KoT-platypus2
Model Details
Model Developers Kyujin Han (kyujinpy)
Input Models input text only.
Output Models generate text only.
Model Architecture
KoT-platypus2-7B is an auto-regressive language model based on the LLaMA2 transformer architecture.
Repo Link
Github KoT-platypus: KoT-platypus2
Base Model
KO-Platypus2-7B-ex
More detail repo(Github): CoT-llama2
More detail repo(Github): KO-Platypus2
Training Dataset
I use KoCoT_2000.
Using DeepL, translate about kaist-CoT.
I use A100 GPU 40GB and COLAB, when trianing.
Training Hyperparameters
Hyperparameters | Value |
---|---|
batch_size | 64 |
micro_batch_size | 1 |
Epochs | 15 |
learning_rate | 1e-5 |
cutoff_len | 4096 |
lr_scheduler | linear |
base_model | kyujinpy/KO-Platypus2-7B-ex |
Model Benchmark
LM Eval Harness - Korean (polyglot branch)
- Used EleutherAI's lm-evaluation-harness
Question Answering (QA)
COPA (F1)
Model | 0-shot | 5-shot | 10-shot | 50-shot |
---|---|---|---|---|
Polyglot-ko-1.3b | 0.7196 | 0.7193 | 0.7204 | 0.7206 |
Polyglot-ko-3.8b | 0.7595 | 0.7608 | 0.7638 | 0.7788 |
Polyglot-ko-5.8b | 0.7745 | 0.7676 | 0.7775 | 0.7887 |
Polyglot-ko-12.8b | 0.7937 | 0.8108 | 0.8037 | 0.8369 |
Llama-2-Ko-7b 20B | 0.7388 | 0.7626 | 0.7808 | 0.7979 |
Llama-2-Ko-7b 40B | 0.7436 | 0.7927 | 0.8037 | 0.8259 |
KO-platypus2-7B-EX | 0.7509 | 0.7899 | 0.8029 | 0.8290 |
KoT-platypus2-7B(ours) | 0.7517 | 0.7868 | 0.8009 | 0.8239 |
Natural Language Inference (NLI; 자연어 추론 평가)
HellaSwag (F1)
Model | 0-shot | 5-shot | 10-shot | 50-shot |
---|---|---|---|---|
Polyglot-ko-1.3b | 0.5247 | 0.5260 | 0.5278 | 0.5427 |
Polyglot-ko-3.8b | 0.5707 | 0.5830 | 0.5670 | 0.5787 |
Polyglot-ko-5.8b | 0.5976 | 0.5998 | 0.5979 | 0.6208 |
Polyglot-ko-12.8b | 0.5954 | 0.6306 | 0.6098 | 0.6118 |
Llama-2-Ko-7b 20B | 0.4518 | 0.4668 | 0.4726 | 0.4828 |
Llama-2-Ko-7b 40B | 0.4562 | 0.4657 | 0.4698 | 0.4774 |
KO-platypus2-7B-EX | 0.4571 | 0.4461 | 0.4371 | 0.4525 |
KoT-platypus2-7B(ours) | 0.4432 | 0.4382 | 0.4550 | 0.4534 |
Question Answering (QA)
BoolQ (F1)
Model | 0-shot | 5-shot | 10-shot | 50-shot |
---|---|---|---|---|
Polyglot-ko-1.3b | 0.3552 | 0.4751 | 0.4109 | 0.4038 |
Polyglot-ko-3.8b | 0.4320 | 0.5263 | 0.4930 | 0.4038 |
Polyglot-ko-5.8b | 0.4356 | 0.5698 | 0.5187 | 0.5236 |
Polyglot-ko-12.8b | 0.4818 | 0.6041 | 0.6289 | 0.6448 |
Llama-2-Ko-7b 20B | 0.3607 | 0.6797 | 0.6801 | 0.6622 |
Llama-2-Ko-7b 40B | 0.5786 | 0.6977 | 0.7084 | 0.7144 |
KO-platypus2-7B-EX | 0.6028 | 0.6979 | 0.7016 | 0.6988 |
KoT-platypus2-7B(ours) | 0.6142 | 0.6757 | 0.6839 | 0.6878 |
Classification
SentiNeg (F1)
Model | 0-shot | 5-shot | 10-shot | 50-shot |
---|---|---|---|---|
Polyglot-ko-1.3b | 0.6790 | 0.6257 | 0.5514 | 0.7851 |
Polyglot-ko-3.8b | 0.4858 | 0.7950 | 0.7320 | 0.7851 |
Polyglot-ko-5.8b | 0.3394 | 0.8841 | 0.8808 | 0.9521 |
Polyglot-ko-12.8b | 0.9117 | 0.9015 | 0.9345 | 0.9723 |
Llama-2-Ko-7b 20B | 0.4855 | 0.8295 | 0.8711 | 0.8513 |
Llama-2-Ko-7b 40B | 0.4594 | 0.7611 | 0.7276 | 0.9370 |
KO-platypus2-7B-EX | 0.5821 | 0.7653 | 0.7991 | 0.8643 |
KoT-platypus2-7B(ours) | 0.6127 | 0.7199 | 0.7531 | 0.8381 |
Implementation Code
### KO-Platypus
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
repo = "kyujinpy/KoT-platypus2-7B"
CoT-llama = AutoModelForCausalLM.from_pretrained(
repo,
return_dict=True,
torch_dtype=torch.float16,
device_map='auto'
)
CoT-llama_tokenizer = AutoTokenizer.from_pretrained(repo)
Readme format: beomi/llama-2-ko-7b
- Downloads last month
- 4,549