metadata
language:
- ko
datasets:
- kyujinpy/OpenOrca-KO
library_name: transformers
pipeline_tag: text-generation
license: cc-by-nc-4.0
Korean-OpenOrca-13B
Model Details
Model Developers Kyujin Han (kyujinpy)
Input Models input text only.
Output Models generate text only.
Model Architecture
Korean-OpenOrca-13B is an auto-regressive language model based on the LLaMA2 transformer architecture.
Repo Link
Github Korean-OpenOrca: (Coming soon...)
Base Model hyunseoki/ko-en-llama2-13b
Training Dataset
I use OpenOrca-KO.
Using DeepL, translate about OpenOrca.
I use A100 GPU 40GB and COLAB, when trianing.
Model Benchmark
KO-LLM leaderboard
- Follow up as Open KO-LLM LeaderBoard.
Model | Average | Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 |
---|---|---|---|---|---|---|
Korean-OpenOrca-13B(ours) | NaN | NaN | NaN | NaN | NaN | NaN |
KoT-Platypus2-13B | 49.55 | 43.69 | 53.05 | 42.29 | 43.34 | 65.38 |
KO-Platypus2-13B | 47.90 | 44.20 | 54.31 | 42.47 | 44.41 | 54.11 |
hyunseoki/ko-en-llama2-13b | 46.68 | 42.15 | 54.23 | 38.90 | 40.74 | 57.39 |
MarkrAI/kyujin-CoTy-platypus-ko-12.8b | 46.44 | 34.98 | 49.11 | 25.68 | 37.59 | 84.86 |
Compare with Top 4 SOTA models. (update: 10/09)
Implementation Code
### KO-Platypus
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
repo = "kyujinpy/Korean-OpenOrca-13B"
OpenOrca = AutoModelForCausalLM.from_pretrained(
repo,
return_dict=True,
torch_dtype=torch.float16,
device_map='auto'
)
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)