|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- kz-transformers/multidomain-kazakh-dataset |
|
language: |
|
- kk |
|
pipeline_tag: fill-mask |
|
library_name: transformers |
|
--- |
|
# Kaz-RoBERTa (base-sized model) |
|
|
|
## Model description |
|
|
|
|
|
|
|
## Usage |
|
|
|
You can use this model directly with a pipeline for masked language modeling: |
|
|
|
```python |
|
>>> from transformers import pipeline |
|
>>> unmasker = pipeline('fill-mask', model='kz-transformers/kaz-roberta-conversational') |
|
>>> unmasker("Hello I'm a <mask> model.") |
|
|
|
|
|
|
|
Here is how to use this model to get the features of a given text in PyTorch: |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForMaskedLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("kz-transformers/kaz-roberta-conversational") |
|
model = AutoModelForMaskedLM.from_pretrained("kz-transformers/kaz-roberta-conversational") |
|
|
|
# prepare input |
|
text = "Replace me by any text you'd like." |
|
encoded_input = tokenizer(text, return_tensors='pt') |
|
|
|
# forward pass |
|
output = model(**encoded_input) |
|
``` |
|
|
|
### BibTeX entry and citation info |