|
--- |
|
pipeline_tag: sentence-similarity |
|
license: cc-by-4.0 |
|
tags: |
|
- sentence-transformers |
|
- feature-extraction |
|
- sentence-similarity |
|
- transformers |
|
language: |
|
- multilingual |
|
- en |
|
- hi |
|
- mr |
|
- kn |
|
- ta |
|
- te |
|
- ml |
|
- gu |
|
- or |
|
- pa |
|
- bn |
|
widget: |
|
- source_sentence: "दिवाळी आपण मोठ्या उत्साहाने साजरी करतो" |
|
sentences: |
|
- "दिवाळी आपण आनंदाने साजरी करतो" |
|
- "दिवाळी हा दिव्यांचा सण आहे" |
|
example_title: "Monolingual- Marathi" |
|
|
|
- source_sentence: "हम दीपावली उत्साह के साथ मनाते हैं" |
|
sentences: |
|
- "हम दीपावली खुशियों से मनाते हैं" |
|
- "दिवाली रोशनी का त्योहार है" |
|
example_title: "Monolingual- Hindi" |
|
|
|
- source_sentence: "અમે ઉત્સાહથી દિવાળી ઉજવીએ છીએ" |
|
sentences: |
|
- "દિવાળી આપણે ખુશીઓથી ઉજવીએ છીએ" |
|
- "દિવાળી એ રોશનીનો તહેવાર છે" |
|
example_title: "Monolingual- Gujarati" |
|
|
|
- source_sentence: "आम्हाला भारतीय असल्याचा अभिमान आहे" |
|
sentences: |
|
- "हमें भारतीय होने पर गर्व है" |
|
- "భారతీయులమైనందుకు గర్విస్తున్నాం" |
|
- "અમને ભારતીય હોવાનો ગર્વ છે" |
|
example_title: "Cross-lingual 1" |
|
|
|
- source_sentence: "ਬਾਰਿਸ਼ ਤੋਂ ਬਾਅਦ ਬਗੀਚਾ ਸੁੰਦਰ ਦਿਖਾਈ ਦਿੰਦਾ ਹੈ" |
|
sentences: |
|
- "മഴയ്ക്ക് ശേഷം പൂന്തോട്ടം മനോഹരമായി കാണപ്പെടുന്നു" |
|
- "ବର୍ଷା ପରେ ବଗିଚା ସୁନ୍ଦର ଦେଖାଯାଏ |" |
|
- "बारिश के बाद बगीचा सुंदर दिखता है" |
|
example_title: "Cross-lingual 2" |
|
--- |
|
|
|
# IndicSBERT-STS |
|
|
|
This is a IndicSBERT model (<a href='https://huggingface.co/l3cube-pune/indic-sentence-bert-nli'>l3cube-pune/indic-sentence-bert-nli</a>) trained on the STS dataset of ten major Indian Languages. <br> |
|
The single model works for English, Hindi, Marathi, Kannada, Tamil, Telugu, Gujarati, Oriya, Punjabi, Malayalam, and Bengali. |
|
The model also has cross-lingual capabilities. <br> |
|
Released as a part of project MahaNLP: https://github.com/l3cube-pune/MarathiNLP <br> |
|
|
|
Generic Indic Sentence BERT model is shared here : <a href='https://huggingface.co/l3cube-pune/indic-sentence-bert-nli'>l3cube-pune/indic-sentence-bert-nli</a> <br> |
|
More details on the dataset, models, and baseline results can be found in our [paper] (https://arxiv.org/abs/2304.11434) (https://arxiv.org/abs/2211.11187) |
|
|
|
``` |
|
@article{deode2023l3cube, |
|
title={L3Cube-IndicSBERT: A simple approach for learning cross-lingual sentence representations using multilingual BERT}, |
|
author={Deode, Samruddhi and Gadre, Janhavi and Kajale, Aditi and Joshi, Ananya and Joshi, Raviraj}, |
|
journal={arXiv preprint arXiv:2304.11434}, |
|
year={2023} |
|
} |
|
``` |
|
|
|
Monolingual similarity models are listed below: <br> |
|
<a href='https://huggingface.co/l3cube-pune/marathi-sentence-similarity-sbert'> Marathi </a> <br> |
|
<a href='https://huggingface.co/l3cube-pune/hindi-sentence-similarity-sbert'> Hindi </a> <br> |
|
<a href='https://huggingface.co/l3cube-pune/kannada-sentence-similarity-sbert'> Kannada </a> <br> |
|
<a href='https://huggingface.co/l3cube-pune/telugu-sentence-similarity-sbert'> Telugu </a> <br> |
|
<a href='https://huggingface.co/l3cube-pune/malayalam-sentence-similarity-sbert'> Malayalam </a> <br> |
|
<a href='https://huggingface.co/l3cube-pune/tamil-sentence-similarity-sbert'> Tamil </a> <br> |
|
<a href='https://huggingface.co/l3cube-pune/gujarati-sentence-similarity-sbert'> Gujarati </a> <br> |
|
<a href='https://huggingface.co/l3cube-pune/odia-sentence-similarity-sbert'> Oriya </a> <br> |
|
<a href='https://huggingface.co/l3cube-pune/bengali-sentence-similarity-sbert'> Bengali </a> <br> |
|
<a href='https://huggingface.co/l3cube-pune/punjabi-sentence-similarity-sbert'> Punjabi </a> <br> |
|
|
|
## Usage (Sentence-Transformers) |
|
|
|
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: |
|
|
|
``` |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can use the model like this: |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
sentences = ["This is an example sentence", "Each sentence is converted"] |
|
|
|
model = SentenceTransformer('{MODEL_NAME}') |
|
embeddings = model.encode(sentences) |
|
print(embeddings) |
|
``` |
|
|
|
|
|
|
|
## Usage (HuggingFace Transformers) |
|
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModel |
|
import torch |
|
|
|
|
|
#Mean Pooling - Take attention mask into account for correct averaging |
|
def mean_pooling(model_output, attention_mask): |
|
token_embeddings = model_output[0] #First element of model_output contains all token embeddings |
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() |
|
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) |
|
|
|
|
|
# Sentences we want sentence embeddings for |
|
sentences = ['This is an example sentence', 'Each sentence is converted'] |
|
|
|
# Load model from HuggingFace Hub |
|
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') |
|
model = AutoModel.from_pretrained('{MODEL_NAME}') |
|
|
|
# Tokenize sentences |
|
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') |
|
|
|
# Compute token embeddings |
|
with torch.no_grad(): |
|
model_output = model(**encoded_input) |
|
|
|
# Perform pooling. In this case, mean pooling. |
|
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) |
|
|
|
print("Sentence embeddings:") |
|
print(sentence_embeddings) |
|
``` |
|
|