|
--- |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- feature-extraction |
|
- sentence-similarity |
|
- transformers |
|
license: cc-by-4.0 |
|
language: mr |
|
widget: |
|
- source_sentence: "शेतकऱ्यांचे डोळे आकाशाकडे लागले आहेत" |
|
sentences: |
|
- "आता शेतकऱ्यांचे डोळे आभाळाकडे लागले आहेत" |
|
- "अन्नधान्य उत्पादनासाठी शेतकरी कष्ट करतात" |
|
- "शहरात कचऱ्याचे ढीग दिसतात" |
|
example_title: "Example 1" |
|
|
|
- source_sentence: "घटनेची माहिती मिळताच पोलिसांचा ताफा तेथे पोहोचला" |
|
sentences: |
|
- "पोलिसांना घटनेची माहिती मिळताच त्यांचे पथक घटनास्थळी पोहोचले" |
|
- "तेव्हा पोलिसांनी त्यांच्या तक्रारीची दखल घेतली नाही" |
|
- "दिवसाचा उत्तरार्ध कुटुंबासोबत मौजमजेत घालवाल" |
|
example_title: "Example 2" |
|
|
|
- source_sentence: "पहिल्या पाच किलोमीटर अंतरासाठी पाच रुपये दर आकारण्यात येत आहे" |
|
sentences: |
|
- "पाच रुपयांत पाच किमी प्रवास करा" |
|
- "दोन ठिकाणांमधले मोठे अंतर प्रवास करणे कंटाळवाणे आहे" |
|
- "नुकत्याच झालेल्या पावसामुळे हिरवळ दिसत आहे" |
|
example_title: "Example 3" |
|
--- |
|
|
|
# MahaSBERT-STS |
|
|
|
A MahaSBERT model (l3cube-pune/marathi-sentence-bert-nli) fine-tuned on STS dataset. <br> |
|
This is released as a part of project MahaNLP : https://github.com/l3cube-pune/MarathiNLP <br> |
|
A multilingual version of this model supporting major Indic languages and cross-lingual sentence similarity is shared here <a href='https://huggingface.co/l3cube-pune/indic-sentence-similarity-sbert'> indic-sentence-similarity-sbert </a> <br> |
|
|
|
More details on the dataset, models, and baseline results can be found in our [paper] (https://arxiv.org/abs/2211.11187) |
|
|
|
``` |
|
@article{joshi2022l3cubemahasbert, |
|
title={L3Cube-MahaSBERT and HindSBERT: Sentence BERT Models and Benchmarking BERT Sentence Representations for Hindi and Marathi}, |
|
author={Joshi, Ananya and Kajale, Aditi and Gadre, Janhavi and Deode, Samruddhi and Joshi, Raviraj}, |
|
journal={arXiv preprint arXiv:2211.11187}, |
|
year={2022} |
|
} |
|
``` |
|
|
|
<a href='https://arxiv.org/abs/2211.11187'> monolingual Indic SBERT paper </a> <br> |
|
<a href='https://arxiv.org/abs/2304.11434'> multilingual Indic SBERT paper </a> |
|
|
|
Other Monolingual similarity models are listed below: <br> |
|
<a href='https://huggingface.co/l3cube-pune/marathi-sentence-similarity-sbert'> Marathi Similarity </a> <br> |
|
<a href='https://huggingface.co/l3cube-pune/hindi-sentence-similarity-sbert'> Hindi Similarity </a> <br> |
|
<a href='https://huggingface.co/l3cube-pune/kannada-sentence-similarity-sbert'> Kannada Similarity </a> <br> |
|
<a href='https://huggingface.co/l3cube-pune/telugu-sentence-similarity-sbert'> Telugu Similarity </a> <br> |
|
<a href='https://huggingface.co/l3cube-pune/malayalam-sentence-similarity-sbert'> Malayalam Similarity </a> <br> |
|
<a href='https://huggingface.co/l3cube-pune/tamil-sentence-similarity-sbert'> Tamil Similarity </a> <br> |
|
<a href='https://huggingface.co/l3cube-pune/gujarati-sentence-similarity-sbert'> Gujarati Similarity </a> <br> |
|
<a href='https://huggingface.co/l3cube-pune/odia-sentence-similarity-sbert'> Oriya Similarity </a> <br> |
|
<a href='https://huggingface.co/l3cube-pune/bengali-sentence-similarity-sbert'> Bengali Similarity </a> <br> |
|
<a href='https://huggingface.co/l3cube-pune/punjabi-sentence-similarity-sbert'> Punjabi Similarity </a> <br> |
|
<a href='https://huggingface.co/l3cube-pune/indic-sentence-similarity-sbert'> Indic Similarity (multilingual)</a> <br> |
|
|
|
Other Monolingual Indic sentence BERT models are listed below: <br> |
|
<a href='https://huggingface.co/l3cube-pune/marathi-sentence-bert-nli'> Marathi SBERT</a> <br> |
|
<a href='https://huggingface.co/l3cube-pune/hindi-sentence-bert-nli'> Hindi SBERT</a> <br> |
|
<a href='https://huggingface.co/l3cube-pune/kannada-sentence-bert-nli'> Kannada SBERT</a> <br> |
|
<a href='https://huggingface.co/l3cube-pune/telugu-sentence-bert-nli'> Telugu SBERT</a> <br> |
|
<a href='https://huggingface.co/l3cube-pune/malayalam-sentence-bert-nli'> Malayalam SBERT</a> <br> |
|
<a href='https://huggingface.co/l3cube-pune/tamil-sentence-bert-nli'> Tamil SBERT</a> <br> |
|
<a href='https://huggingface.co/l3cube-pune/gujarati-sentence-bert-nli'> Gujarati SBERT</a> <br> |
|
<a href='https://huggingface.co/l3cube-pune/odia-sentence-bert-nli'> Oriya SBERT</a> <br> |
|
<a href='https://huggingface.co/l3cube-pune/bengali-sentence-bert-nli'> Bengali SBERT</a> <br> |
|
<a href='https://huggingface.co/l3cube-pune/punjabi-sentence-bert-nli'> Punjabi SBERT</a> <br> |
|
<a href='https://huggingface.co/l3cube-pune/indic-sentence-bert-nli'> Indic SBERT (multilingual)</a> <br> |
|
|
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. |
|
|
|
<!--- Describe your model here --> |
|
|
|
## Usage (Sentence-Transformers) |
|
|
|
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: |
|
|
|
``` |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can use the model like this: |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
sentences = ["This is an example sentence", "Each sentence is converted"] |
|
|
|
model = SentenceTransformer('{MODEL_NAME}') |
|
embeddings = model.encode(sentences) |
|
print(embeddings) |
|
``` |
|
|
|
|
|
|
|
## Usage (HuggingFace Transformers) |
|
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModel |
|
import torch |
|
|
|
|
|
#Mean Pooling - Take attention mask into account for correct averaging |
|
def mean_pooling(model_output, attention_mask): |
|
token_embeddings = model_output[0] #First element of model_output contains all token embeddings |
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() |
|
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) |
|
|
|
|
|
# Sentences we want sentence embeddings for |
|
sentences = ['This is an example sentence', 'Each sentence is converted'] |
|
|
|
# Load model from HuggingFace Hub |
|
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') |
|
model = AutoModel.from_pretrained('{MODEL_NAME}') |
|
|
|
# Tokenize sentences |
|
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') |
|
|
|
# Compute token embeddings |
|
with torch.no_grad(): |
|
model_output = model(**encoded_input) |
|
|
|
# Perform pooling. In this case, mean pooling. |
|
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) |
|
|
|
print("Sentence embeddings:") |
|
print(sentence_embeddings) |
|
``` |
|
|