Edit model card

SpanMarker

This is a SpanMarker model trained on the conll2003 dataset that can be used for Named Entity Recognition.

Model Details

Important Note: I used the Tokenizer from "roberta-base".

from span_marker import SpanMarkerModel
from span_marker.tokenizer import SpanMarkerTokenizer

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("lambdavi/span-marker-luke-base-conll2003")
+tokenizer = SpanMarkerTokenizer.from_pretrained("roberta-base", config=model.tokenizer.config)
+model.set_tokenizer(tokenizer)

# Run inference
entities = model.predict("Portsmouth:Middlesex 199 and 426 (J. Pooley 111,M. Ramprakash 108,M. Gatting 83), Hampshire 232 and 109-5.")

Model Description

  • Model Type: SpanMarker
  • Maximum Sequence Length: 512 tokens
  • Maximum Entity Length: 8 words
  • Training Dataset: conll2003

Model Sources

Model Labels

Label Examples
LOC "Germany", "BRUSSELS", "Britain"
MISC "German", "British", "EU-wide"
ORG "European Commission", "EU", "European Union"
PER "Werner Zwingmann", "Nikolaus van der Pas", "Peter Blackburn"

Uses

Direct Use for Inference

from span_marker import SpanMarkerModel
from span_marker.tokenizer import SpanMarkerTokenizer

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("lambdavi/span-marker-luke-base-conll2003")
tokenizer = SpanMarkerTokenizer.from_pretrained("roberta-base", config=model.tokenizer.config)
model.set_tokenizer(tokenizer)

# Run inference
entities = model.predict("Portsmouth:Middlesex 199 and 426 (J. Pooley 111,M. Ramprakash 108,M. Gatting 83), Hampshire 232 and 109-5.")

Downstream Use

You can finetune this model on your own dataset.

Click to expand
from span_marker import SpanMarkerModel, Trainer

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("span_marker_model_id")

# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003

# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
    model=model,
    train_dataset=dataset["train"],
    eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("span_marker_model_id-finetuned")

Training Details

Training Set Metrics

Training set Min Median Max
Sentence length 1 14.5019 113
Entities per sentence 0 1.6736 20

Training Hyperparameters

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5

Training Results

Epoch Step Validation Loss Validation Precision Validation Recall Validation F1 Validation Accuracy
1.0 883 0.0123 0.9293 0.9274 0.9284 0.9848
2.0 1766 0.0089 0.9412 0.9456 0.9434 0.9882
3.0 2649 0.0077 0.9499 0.9505 0.9502 0.9893
4.0 3532 0.0070 0.9527 0.9537 0.9532 0.9900
5.0 4415 0.0068 0.9543 0.9557 0.9550 0.9902

Framework Versions

  • Python: 3.10.12
  • SpanMarker: 1.5.0
  • Transformers: 4.36.0
  • PyTorch: 2.0.0
  • Datasets: 2.16.1
  • Tokenizers: 0.15.0

Citation

BibTeX

@software{Aarsen_SpanMarker,
    author = {Aarsen, Tom},
    license = {Apache-2.0},
    title = {{SpanMarker for Named Entity Recognition}},
    url = {https://github.com/tomaarsen/SpanMarkerNER}
}
Downloads last month
2
Safetensors
Model size
275M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train lambdavi/span-marker-luke-base-conll2003

Collection including lambdavi/span-marker-luke-base-conll2003

Evaluation results