metadata
license: bsd-3-clause
base_model: MIT/ast-finetuned-audioset-10-10-0.4593
tags:
- generated_from_trainer
datasets:
- audiofolder
metrics:
- f1
model-index:
- name: ast-finetuned-audioset-10-10-0.4593-finetuned-AST
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: audiofolder
type: audiofolder
config: Data_Train
split: train
args: Data_Train
metrics:
- name: F1
type: f1
value: 0.9276872550130031
ast-finetuned-audioset-10-10-0.4593-finetuned-AST
This model is a fine-tuned version of MIT/ast-finetuned-audioset-10-10-0.4593 on the audiofolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.4230
- F1: 0.9277
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | F1 |
---|---|---|---|---|
0.1148 | 1.0 | 1449 | 0.5953 | 0.8492 |
0.234 | 2.0 | 2898 | 0.5676 | 0.8704 |
0.2579 | 3.0 | 4347 | 0.4810 | 0.9086 |
0.077 | 4.0 | 5796 | 0.4230 | 0.9277 |
0.0001 | 5.0 | 7245 | 0.4369 | 0.9232 |
Framework versions
- Transformers 4.31.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3