laura63's picture
update model card README.md
50a6bdc
|
raw
history blame
2.36 kB
metadata
license: bsd-3-clause
tags:
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - f1
model-index:
  - name: ast-finetuned-audioset-10-10-0.4593-finetuned-AST
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: audiofolder
          type: audiofolder
          config: Data_Train
          split: train
          args: Data_Train
        metrics:
          - name: F1
            type: f1
            value: 0.9263904420024879

ast-finetuned-audioset-10-10-0.4593-finetuned-AST

This model is a fine-tuned version of MIT/ast-finetuned-audioset-10-10-0.4593 on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5280
  • F1: 0.9264

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss F1
0.875 1.0 688 0.5758 0.8268
1.1367 2.0 1376 0.5628 0.8709
0.0831 3.0 2064 0.5236 0.8933
0.0964 4.0 2752 0.4338 0.9204
0.001 5.0 3440 0.5198 0.9174
0.0001 6.0 4128 0.5625 0.9150
0.0 7.0 4816 0.5280 0.9264
0.0 8.0 5504 0.5261 0.9221
0.0 9.0 6192 0.5256 0.9206
0.0 10.0 6880 0.5271 0.9193

Framework versions

  • Transformers 4.31.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3