laura63's picture
update model card README.md
d876b34
|
raw
history blame
2.2 kB
metadata
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - accuracy
  - f1
model-index:
  - name: wav2vec2-base-finetuned-ks
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: audiofolder
          type: audiofolder
          config: Data_Train
          split: train
          args: Data_Train
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8127696289905091
          - name: F1
            type: f1
            value: 0.7948883642136002

wav2vec2-base-finetuned-ks

This model is a fine-tuned version of facebook/wav2vec2-base on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9323
  • Accuracy: 0.8128
  • F1: 0.7949

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
1.844 1.0 1449 1.7968 0.5065 0.3818
0.8796 2.0 2898 1.1875 0.6799 0.6273
0.7076 3.0 4347 1.0995 0.7584 0.7287
0.4669 4.0 5796 0.9960 0.7886 0.7675
0.2156 5.0 7245 0.9323 0.8128 0.7949

Framework versions

  • Transformers 4.31.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3