Edit model card

segformer-b4-wall

This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1537
  • Mean Accuracy: 0.9448
  • Mean Iou: 0.8993
  • Overall Accuracy: 0.9558
  • Per Category Accuracy: [0.9648476610683054, 0.9680509025433003, 0.9015647356112896, nan]
  • Per Category Iou: [0.9294668192886654, 0.9344825387850888, 0.8340281823830938, nan]

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Mean Accuracy Mean Iou Overall Accuracy Per Category Accuracy Per Category Iou
0.1398 5.3476 1000 0.1477 0.9424 0.8733 0.9420 [0.9375947027923643, 0.962438818648652, 0.9270677962243152, nan] [0.9071928258269675, 0.9154732958813474, 0.7971633247503161, nan]
0.1114 10.6952 2000 0.1329 0.9426 0.8878 0.9498 [0.9551513266050631, 0.9606741248023447, 0.9120448217426163, nan] [0.9197608920879746, 0.9255854097692368, 0.818153830444766, nan]
0.0683 16.0428 3000 0.1353 0.9473 0.8921 0.9516 [0.9527839457434386, 0.9691455504455139, 0.9198476394516605, nan] [0.922537499674425, 0.926305870761282, 0.8273726843249476, nan]
0.0753 21.3904 4000 0.1311 0.9437 0.8959 0.9540 [0.9633835386385788, 0.9611760655179852, 0.9066569940696604, nan] [0.9267602358926313, 0.9312805978213234, 0.8297698871401628, nan]
0.0505 26.7380 5000 0.1397 0.9442 0.8971 0.9545 [0.9627544499461427, 0.967327419780526, 0.9024453947068249, nan] [0.9272910775593762, 0.9304849186604474, 0.8333807013974415, nan]
0.0427 32.0856 6000 0.1414 0.9455 0.8992 0.9555 [0.9640187847053339, 0.9652081246861538, 0.9074073950598316, nan] [0.9289147168722637, 0.9321577805497577, 0.8366507705917902, nan]
0.0556 37.4332 7000 0.1477 0.9452 0.8984 0.9552 [0.9629165900233977, 0.9697602413261539, 0.9029026554269718, nan] [0.9285106797857617, 0.9331322728249959, 0.833620894806762, nan]
0.0424 42.7807 8000 0.1484 0.9439 0.8990 0.9557 [0.9653151526182964, 0.96949089540134, 0.8967977175922358, nan] [0.9292691886525306, 0.9343666443212755, 0.83323737535253, nan]
0.053 48.1283 9000 0.1537 0.9448 0.8993 0.9558 [0.9648476610683054, 0.9680509025433003, 0.9015647356112896, nan] [0.9294668192886654, 0.9344825387850888, 0.8340281823830938, nan]

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.19.1
Downloads last month
12
Safetensors
Model size
3.72M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.