segformer-b4-wall
This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1537
- Mean Accuracy: 0.9448
- Mean Iou: 0.8993
- Overall Accuracy: 0.9558
- Per Category Accuracy: [0.9648476610683054, 0.9680509025433003, 0.9015647356112896, nan]
- Per Category Iou: [0.9294668192886654, 0.9344825387850888, 0.8340281823830938, nan]
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Accuracy | Mean Iou | Overall Accuracy | Per Category Accuracy | Per Category Iou |
---|---|---|---|---|---|---|---|---|
0.1398 | 5.3476 | 1000 | 0.1477 | 0.9424 | 0.8733 | 0.9420 | [0.9375947027923643, 0.962438818648652, 0.9270677962243152, nan] | [0.9071928258269675, 0.9154732958813474, 0.7971633247503161, nan] |
0.1114 | 10.6952 | 2000 | 0.1329 | 0.9426 | 0.8878 | 0.9498 | [0.9551513266050631, 0.9606741248023447, 0.9120448217426163, nan] | [0.9197608920879746, 0.9255854097692368, 0.818153830444766, nan] |
0.0683 | 16.0428 | 3000 | 0.1353 | 0.9473 | 0.8921 | 0.9516 | [0.9527839457434386, 0.9691455504455139, 0.9198476394516605, nan] | [0.922537499674425, 0.926305870761282, 0.8273726843249476, nan] |
0.0753 | 21.3904 | 4000 | 0.1311 | 0.9437 | 0.8959 | 0.9540 | [0.9633835386385788, 0.9611760655179852, 0.9066569940696604, nan] | [0.9267602358926313, 0.9312805978213234, 0.8297698871401628, nan] |
0.0505 | 26.7380 | 5000 | 0.1397 | 0.9442 | 0.8971 | 0.9545 | [0.9627544499461427, 0.967327419780526, 0.9024453947068249, nan] | [0.9272910775593762, 0.9304849186604474, 0.8333807013974415, nan] |
0.0427 | 32.0856 | 6000 | 0.1414 | 0.9455 | 0.8992 | 0.9555 | [0.9640187847053339, 0.9652081246861538, 0.9074073950598316, nan] | [0.9289147168722637, 0.9321577805497577, 0.8366507705917902, nan] |
0.0556 | 37.4332 | 7000 | 0.1477 | 0.9452 | 0.8984 | 0.9552 | [0.9629165900233977, 0.9697602413261539, 0.9029026554269718, nan] | [0.9285106797857617, 0.9331322728249959, 0.833620894806762, nan] |
0.0424 | 42.7807 | 8000 | 0.1484 | 0.9439 | 0.8990 | 0.9557 | [0.9653151526182964, 0.96949089540134, 0.8967977175922358, nan] | [0.9292691886525306, 0.9343666443212755, 0.83323737535253, nan] |
0.053 | 48.1283 | 9000 | 0.1537 | 0.9448 | 0.8993 | 0.9558 | [0.9648476610683054, 0.9680509025433003, 0.9015647356112896, nan] | [0.9294668192886654, 0.9344825387850888, 0.8340281823830938, nan] |
Framework versions
- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.17.0
- Tokenizers 0.19.1
- Downloads last month
- 12
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.