Edit model card

Whisper Medium Mnong

This model is a fine-tuned version of openai/whisper-medium on the MnongAudio-v2 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2773
  • Wer: 16.8874

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
2.1592 0.2915 200 2.0293 117.3459
1.3786 0.5831 400 1.3853 90.0408
0.9096 0.8746 600 1.0002 77.8146
0.5869 1.1662 800 0.7615 64.7733
0.4996 1.4577 1000 0.5799 52.1141
0.3741 1.7493 1200 0.4811 60.9781
0.1899 2.0408 1400 0.4078 35.3031
0.1792 2.3324 1600 0.3690 34.2588
0.1514 2.6239 1800 0.3361 31.5079
0.1758 2.9155 2000 0.3069 30.9730
0.0619 3.2070 2200 0.3031 28.2731
0.047 3.4985 2400 0.2952 22.1600
0.0472 3.7901 2600 0.2914 24.8344
0.0246 4.0816 2800 0.2799 20.0458
0.0255 4.3732 3000 0.2849 23.4590
0.0246 4.6647 3200 0.2773 19.5619
0.0235 4.9563 3400 0.2736 20.4279
0.0088 5.2478 3600 0.2795 19.9440
0.0076 5.5394 3800 0.2786 17.0657
0.0057 5.8309 4000 0.2773 16.8874

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.4.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
17
Safetensors
Model size
764M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for legendary2910/Mnong-ASR-v1

Finetuned
(454)
this model