LEVI_whisper_medium / README.md
NiranjanC's picture
Create README.md
ae2a0bf verified
|
raw
history blame
1.54 kB
metadata
language:
  - en
metrics:
  - wer
pipeline_tag: automatic-speech-recognition

Model Card: LEVI Whisper Medium Fine-Tuned Model

Model Information

  • Model Name: levicu/LEVI_whisper_medium
  • Description: This model is a fine-tuned version of the OpenAI Whisper Medium model, tailored for speech recognition tasks using the LEVI v2 dataset, which consists of classroom audiovisual recording data.
  • Model Architecture: openai/whisper-medium
  • Dataset: LEVI v2 (classroom audiovisual recording data)

Training Details

  • Training Procedure:
    • LoRA Parameter Efficient Fine-tuning technique with the following parameters:
      • r=32
      • lora_alpha=64
      • target_modules=["q_proj", "v_proj"]
      • lora_dropout=0.05
      • bias="none"
    • INT8 quantization
    • Trained for 6 epochs with a learning rate of 1e-4 and warmup steps of 100 without gradient accumulation.
  • Evaluation Metrics: Word Error Rate (WER)

Usage

  • Usage: The model can be used for speech recognition tasks. Inputs should be audio files, and the model outputs transcriptions.

Limitations and Ethical Considerations

  • Limitations: None provided.
  • Ethical Considerations: Consider the ethical implications of using this model, particularly in scenarios involving sensitive or private information.

License

  • License: Not specified.

Contact Information