|
--- |
|
license: cc-by-nc-4.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: wav2vec2-base-100k-voxpopuli-finetuned-gtzan |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-base-100k-voxpopuli-finetuned-gtzan |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-base-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-base-100k-voxpopuli) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.9408 |
|
- Accuracy: 0.86 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 4 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 20 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| No log | 1.0 | 225 | 2.1672 | 0.3 | |
|
| 2.1675 | 2.0 | 450 | 2.0095 | 0.29 | |
|
| 2.1675 | 3.0 | 675 | 1.7326 | 0.29 | |
|
| 1.7199 | 4.0 | 900 | 1.4980 | 0.49 | |
|
| 1.7199 | 5.0 | 1125 | 1.4088 | 0.37 | |
|
| 1.3585 | 6.0 | 1350 | 1.2238 | 0.54 | |
|
| 1.3585 | 7.0 | 1575 | 1.3579 | 0.52 | |
|
| 1.0599 | 8.0 | 1800 | 0.9954 | 0.62 | |
|
| 1.0599 | 9.0 | 2025 | 0.9543 | 0.73 | |
|
| 0.8337 | 10.0 | 2250 | 0.9428 | 0.76 | |
|
| 0.8337 | 11.0 | 2475 | 0.8810 | 0.78 | |
|
| 0.5861 | 12.0 | 2700 | 0.7753 | 0.76 | |
|
| 0.5861 | 13.0 | 2925 | 0.9981 | 0.74 | |
|
| 0.3662 | 14.0 | 3150 | 1.1597 | 0.77 | |
|
| 0.3662 | 15.0 | 3375 | 1.0466 | 0.79 | |
|
| 0.277 | 16.0 | 3600 | 1.0763 | 0.81 | |
|
| 0.277 | 17.0 | 3825 | 0.8407 | 0.87 | |
|
| 0.1731 | 18.0 | 4050 | 0.9317 | 0.86 | |
|
| 0.1731 | 19.0 | 4275 | 0.8545 | 0.87 | |
|
| 0.1489 | 20.0 | 4500 | 0.9408 | 0.86 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.17.0 |
|
- Pytorch 1.10.2 |
|
- Datasets 1.18.4 |
|
- Tokenizers 0.11.6 |
|
|