lex-hue's picture
Adding Evaluation Results (#1)
812b372 verified
metadata
license: apache-2.0
model-index:
  - name: Delexa-Instruct-V0.1-7b
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 66.38
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lex-hue/Delexa-Instruct-V0.1-7b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 85.9
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lex-hue/Delexa-Instruct-V0.1-7b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 63.79
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lex-hue/Delexa-Instruct-V0.1-7b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 61.73
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lex-hue/Delexa-Instruct-V0.1-7b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 78.37
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lex-hue/Delexa-Instruct-V0.1-7b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 62.93
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lex-hue/Delexa-Instruct-V0.1-7b
          name: Open LLM Leaderboard

Delexa-V0.1-Instruct-7b: Our Newest and Best Model Yet!

We are excited to announce the release of Delexa-V0.1-Instruct-7b, our newest and best model yet! Delexa-V0.1-Instruct-7b has shown excellent performance on a variety of tasks, and we are confident that it will be a valuable asset to the research community.

Eval Results

Delexa-V0.1-Instruct-7b was evaluated on a dataset of question-answer pairs. The model was given a single question and three different answer choices, and it was tasked with selecting the best answer. Delexa-V0.1-Instruct-7b achieved an average score of 8.27 on this task.

Here is a table showing the detailed eval results:

Model Turn 1 Turn 2 Average
gpt-4 8.95625 9.0250 8.990625
Delexa-V0.1-Instruct-7b 8.57500 7.9500 8.268750
claude-v1 8.15000 7.6500 7.900000
gpt-3.5-turbo 8.07500 7.8125 7.943750
vicuna-13b-v1.3 6.81250 5.9625 6.387500
palm-2-chat-bison-001 6.71250 6.0875 6.400000

Technique

One of the key factors that contributed to Delexa-V0.1-Instruct-7b's success is the technique of training the model with one question and three different answers. This technique allows the model to take into account different perspectives and viewpoints, which leads to more robust and accurate results.

Future Work

We are excited to continue working on Delexa and to see how it can be further improved. We are currently working on an Instruct model, which is a type of model that can be fine-tuned on specific tasks. We believe that Instruct models have the potential to be even more powerful than Delexa-V0.1-7b, and we are eager to see the results of our ongoing research.

We would like to thank the entire team for their hard work on Delexa-V0.1-Instruct-7b. We are confident that this model will be a valuable asset to the research community.

Guardrails:

This Model allows 18+ content and lewd content, but it wont let any illegal content through (unless you jailbreak it).

Support Our Work and Join our Community!

Our Patreon

Our Twitter

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 69.85
AI2 Reasoning Challenge (25-Shot) 66.38
HellaSwag (10-Shot) 85.90
MMLU (5-Shot) 63.79
TruthfulQA (0-shot) 61.73
Winogrande (5-shot) 78.37
GSM8k (5-shot) 62.93