|
--- |
|
language: pt |
|
datasets: |
|
- common_voice |
|
- mls |
|
- cetuc |
|
- lapsbm |
|
- voxforge |
|
- tedx |
|
- sid |
|
metrics: |
|
- wer |
|
tags: |
|
- audio |
|
- speech |
|
- wav2vec2 |
|
- pt |
|
- portuguese-speech-corpus |
|
- automatic-speech-recognition |
|
- speech |
|
- PyTorch |
|
license: apache-2.0 |
|
--- |
|
|
|
# lapsbm1-xlsr: Wav2vec 2.0 with LaPSBM Dataset |
|
|
|
This is a the demonstration of a fine-tuned Wav2vec model for Brazilian Portuguese using the [LaPS BM](https://github.com/falabrasil/gitlab-resources) dataset. |
|
|
|
In this notebook the model is tested against other available Brazilian Portuguese datasets. |
|
|
|
| Dataset | Train | Valid | Test | |
|
|--------------------------------|-------:|------:|------:| |
|
| CETUC | | -- | 5.4h | |
|
| Common Voice | | -- | 9.5h | |
|
| LaPS BM | 0.8h | -- | 0.1h | |
|
| MLS | | -- | 3.7h | |
|
| Multilingual TEDx (Portuguese) | | -- | 1.8h | |
|
| SID | | -- | 1.0h | |
|
| VoxForge | | -- | 0.1h | |
|
| Total | | -- | 21.6h | |
|
|
|
|
|
#### Summary |
|
|
|
| | CETUC | CV | LaPS | MLS | SID | TEDx | VF | AVG | |
|
|----------------------|---------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------| |
|
| lapsbm1\_100 (demonstration below) | 0.111 | 0.418 | 0.145 | 0.299 | 0.562 | 0.580 | 0.469 | 0.369 | |
|
| lapsbm1\_100 + 4-gram (demonstration below) | 0.061 | 0.305 | 0.089 | 0.201 | 0.452 | 0.525 | 0.381 | 0.287 | |
|
|
|
## Demonstration |
|
|
|
|
|
```python |
|
MODEL_NAME = "lgris/lapsbm1-xlsr" |
|
``` |
|
|
|
### Imports and dependencies |
|
|
|
|
|
```python |
|
%%capture |
|
!pip install torch==1.8.2+cu111 torchvision==0.9.2+cu111 torchaudio===0.8.2 -f https://download.pytorch.org/whl/lts/1.8/torch_lts.html |
|
!pip install datasets |
|
!pip install jiwer |
|
!pip install transformers |
|
!pip install soundfile |
|
!pip install pyctcdecode |
|
!pip install https://github.com/kpu/kenlm/archive/master.zip |
|
``` |
|
|
|
|
|
```python |
|
import jiwer |
|
import torchaudio |
|
from datasets import load_dataset, load_metric |
|
from transformers import ( |
|
Wav2Vec2ForCTC, |
|
Wav2Vec2Processor, |
|
) |
|
from pyctcdecode import build_ctcdecoder |
|
import torch |
|
import re |
|
import sys |
|
``` |
|
|
|
### Helpers |
|
|
|
|
|
```python |
|
chars_to_ignore_regex = '[\,\?\.\!\;\:\"]' # noqa: W605 |
|
|
|
def map_to_array(batch): |
|
speech, _ = torchaudio.load(batch["path"]) |
|
batch["speech"] = speech.squeeze(0).numpy() |
|
batch["sampling_rate"] = 16_000 |
|
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'") |
|
batch["target"] = batch["sentence"] |
|
return batch |
|
``` |
|
|
|
|
|
```python |
|
def calc_metrics(truths, hypos): |
|
wers = [] |
|
mers = [] |
|
wils = [] |
|
for t, h in zip(truths, hypos): |
|
try: |
|
wers.append(jiwer.wer(t, h)) |
|
mers.append(jiwer.mer(t, h)) |
|
wils.append(jiwer.wil(t, h)) |
|
except: # Empty string? |
|
pass |
|
wer = sum(wers)/len(wers) |
|
mer = sum(mers)/len(mers) |
|
wil = sum(wils)/len(wils) |
|
return wer, mer, wil |
|
``` |
|
|
|
|
|
```python |
|
def load_data(dataset): |
|
data_files = {'test': f'{dataset}/test.csv'} |
|
dataset = load_dataset('csv', data_files=data_files)["test"] |
|
return dataset.map(map_to_array) |
|
``` |
|
|
|
### Model |
|
|
|
|
|
```python |
|
class STT: |
|
|
|
def __init__(self, |
|
model_name, |
|
device='cuda' if torch.cuda.is_available() else 'cpu', |
|
lm=None): |
|
self.model_name = model_name |
|
self.model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device) |
|
self.processor = Wav2Vec2Processor.from_pretrained(model_name) |
|
self.vocab_dict = self.processor.tokenizer.get_vocab() |
|
self.sorted_dict = { |
|
k.lower(): v for k, v in sorted(self.vocab_dict.items(), |
|
key=lambda item: item[1]) |
|
} |
|
self.device = device |
|
self.lm = lm |
|
if self.lm: |
|
self.lm_decoder = build_ctcdecoder( |
|
list(self.sorted_dict.keys()), |
|
self.lm |
|
) |
|
|
|
def batch_predict(self, batch): |
|
features = self.processor(batch["speech"], |
|
sampling_rate=batch["sampling_rate"][0], |
|
padding=True, |
|
return_tensors="pt") |
|
input_values = features.input_values.to(self.device) |
|
attention_mask = features.attention_mask.to(self.device) |
|
with torch.no_grad(): |
|
logits = self.model(input_values, attention_mask=attention_mask).logits |
|
if self.lm: |
|
logits = logits.cpu().numpy() |
|
batch["predicted"] = [] |
|
for sample_logits in logits: |
|
batch["predicted"].append(self.lm_decoder.decode(sample_logits)) |
|
else: |
|
pred_ids = torch.argmax(logits, dim=-1) |
|
batch["predicted"] = self.processor.batch_decode(pred_ids) |
|
return batch |
|
``` |
|
|
|
### Download datasets |
|
|
|
|
|
```python |
|
%%capture |
|
!gdown --id 1HFECzIizf-bmkQRLiQD0QVqcGtOG5upI |
|
!mkdir bp_dataset |
|
!unzip bp_dataset -d bp_dataset/ |
|
``` |
|
|
|
### Tests |
|
|
|
|
|
```python |
|
stt = STT(MODEL_NAME) |
|
``` |
|
|
|
#### CETUC |
|
|
|
|
|
```python |
|
ds = load_data('cetuc_dataset') |
|
result = ds.map(stt.batch_predict, batched=True, batch_size=8) |
|
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) |
|
print("CETUC WER:", wer) |
|
``` |
|
CETUC WER: 0.11147816967489037 |
|
|
|
|
|
#### Common Voice |
|
|
|
|
|
```python |
|
ds = load_data('commonvoice_dataset') |
|
result = ds.map(stt.batch_predict, batched=True, batch_size=8) |
|
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) |
|
print("CV WER:", wer) |
|
``` |
|
CV WER: 0.41880890234535906 |
|
|
|
|
|
#### LaPS |
|
|
|
|
|
```python |
|
ds = load_data('lapsbm_dataset') |
|
result = ds.map(stt.batch_predict, batched=True, batch_size=8) |
|
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) |
|
print("Laps WER:", wer) |
|
``` |
|
Laps WER: 0.1451893939393939 |
|
|
|
|
|
#### MLS |
|
|
|
|
|
```python |
|
ds = load_data('mls_dataset') |
|
result = ds.map(stt.batch_predict, batched=True, batch_size=8) |
|
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) |
|
print("MLS WER:", wer) |
|
``` |
|
MLS WER: 0.29958960206171104 |
|
|
|
|
|
#### SID |
|
|
|
|
|
```python |
|
ds = load_data('sid_dataset') |
|
result = ds.map(stt.batch_predict, batched=True, batch_size=8) |
|
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) |
|
print("Sid WER:", wer) |
|
``` |
|
Sid WER: 0.5626767414610376 |
|
|
|
|
|
#### TEDx |
|
|
|
|
|
```python |
|
ds = load_data('tedx_dataset') |
|
result = ds.map(stt.batch_predict, batched=True, batch_size=8) |
|
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) |
|
print("TEDx WER:", wer) |
|
``` |
|
TEDx WER: 0.5807549973642049 |
|
|
|
|
|
#### VoxForge |
|
|
|
|
|
```python |
|
ds = load_data('voxforge_dataset') |
|
result = ds.map(stt.batch_predict, batched=True, batch_size=8) |
|
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) |
|
print("VoxForge WER:", wer) |
|
``` |
|
VoxForge WER: 0.4693479437229436 |
|
|
|
|
|
### Tests with LM |
|
|
|
|
|
```python |
|
# !find -type f -name "*.wav" -delete |
|
!rm -rf ~/.cache |
|
!gdown --id 1GJIKseP5ZkTbllQVgOL98R4yYAcIySFP # trained with wikipedia |
|
stt = STT(MODEL_NAME, lm='pt-BR-wiki.word.4-gram.arpa') |
|
# !gdown --id 1dLFldy7eguPtyJj5OAlI4Emnx0BpFywg # trained with bp |
|
# stt = STT(MODEL_NAME, lm='pt-BR.word.4-gram.arpa') |
|
``` |
|
|
|
#### CETUC |
|
|
|
|
|
```python |
|
ds = load_data('cetuc_dataset') |
|
result = ds.map(stt.batch_predict, batched=True, batch_size=8) |
|
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) |
|
print("CETUC WER:", wer) |
|
``` |
|
CETUC WER: 0.06157628194513477 |
|
|
|
|
|
#### Common Voice |
|
|
|
|
|
```python |
|
ds = load_data('commonvoice_dataset') |
|
result = ds.map(stt.batch_predict, batched=True, batch_size=8) |
|
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) |
|
print("CV WER:", wer) |
|
``` |
|
CV WER: 0.3051714756833442 |
|
|
|
|
|
#### LaPS |
|
|
|
|
|
```python |
|
ds = load_data('lapsbm_dataset') |
|
result = ds.map(stt.batch_predict, batched=True, batch_size=8) |
|
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) |
|
print("Laps WER:", wer) |
|
``` |
|
Laps WER: 0.0893623737373737 |
|
|
|
|
|
#### MLS |
|
|
|
|
|
```python |
|
ds = load_data('mls_dataset') |
|
result = ds.map(stt.batch_predict, batched=True, batch_size=8) |
|
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) |
|
print("MLS WER:", wer) |
|
``` |
|
MLS WER: 0.20062044237806004 |
|
|
|
|
|
#### SID |
|
|
|
|
|
```python |
|
ds = load_data('sid_dataset') |
|
result = ds.map(stt.batch_predict, batched=True, batch_size=8) |
|
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) |
|
print("Sid WER:", wer) |
|
``` |
|
Sid WER: 0.4522665618175908 |
|
|
|
|
|
#### TEDx |
|
|
|
|
|
```python |
|
ds = load_data('tedx_dataset') |
|
result = ds.map(stt.batch_predict, batched=True, batch_size=8) |
|
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) |
|
print("TEDx WER:", wer) |
|
``` |
|
TEDx WER: 0.5256707813182246 |
|
|
|
|
|
#### VoxForge |
|
|
|
|
|
```python |
|
ds = load_data('voxforge_dataset') |
|
result = ds.map(stt.batch_predict, batched=True, batch_size=8) |
|
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) |
|
print("VoxForge WER:", wer) |
|
``` |
|
VoxForge WER: 0.38106331168831165 |
|
|
|
|