Edit model card

bp500-base10k_voxpopuli: Wav2vec 2.0 with Brazilian Portuguese (BP) Dataset

This is a the demonstration of a fine-tuned Wav2vec model for Brazilian Portuguese using the following datasets:

  • CETUC: contains approximately 145 hours of Brazilian Portuguese speech distributed among 50 male and 50 female speakers, each pronouncing approximately 1,000 phonetically balanced sentences selected from the CETEN-Folha corpus.
  • Common Voice 7.0: is a project proposed by Mozilla Foundation with the goal to create a wide open dataset in different languages. In this project, volunteers donate and validate speech using the oficial site.
  • Lapsbm: "Falabrasil - UFPA" is a dataset used by the Fala Brasil group to benchmark ASR systems in Brazilian Portuguese. Contains 35 speakers (10 females), each one pronouncing 20 unique sentences, totalling 700 utterances in Brazilian Portuguese. The audios were recorded in 22.05 kHz without environment control.
  • Multilingual Librispeech (MLS): a massive dataset available in many languages. The MLS is based on audiobook recordings in public domain like LibriVox. The dataset contains a total of 6k hours of transcribed data in many languages. The set in Portuguese used in this work (mostly Brazilian variant) has approximately 284 hours of speech, obtained from 55 audiobooks read by 62 speakers.
  • Multilingual TEDx: a collection of audio recordings from TEDx talks in 8 source languages. The Portuguese set (mostly Brazilian Portuguese variant) contains 164 hours of transcribed speech.
  • Sidney (SID): contains 5,777 utterances recorded by 72 speakers (20 women) from 17 to 59 years old with fields such as place of birth, age, gender, education, and occupation;
  • VoxForge: is a project with the goal to build open datasets for acoustic models. The corpus contains approximately 100 speakers and 4,130 utterances of Brazilian Portuguese, with sample rates varying from 16kHz to 44.1kHz.

These datasets were combined to build a larger Brazilian Portuguese dataset. All data was used for training except Common Voice dev/test sets, that were used for validation/test respectively. We also made test sets for all the gathered datasets.

Dataset Train Valid Test
CETUC 94.0h -- 5.4h
Common Voice 37.8h 8.9h 9.5h
LaPS BM 0.8h -- 0.1h
MLS 161.0h -- 3.7h
Multilingual TEDx (Portuguese) 148.9h -- 1.8h
SID 7.2h -- 1.0h
VoxForge 3.9h -- 0.1h
Total 453.6h 8.9h 21.6h

The original model was fine-tuned using fairseq. This notebook uses a converted version of the original one. The link to the original fairseq model is available here.

Summary

CETUC CV LaPS MLS SID TEDx VF AVG
bp_500-base10k_voxpopuli (demonstration below) 0.120 0.249 0.039 0.227 0.169 0.349 0.116 0.181
bp_500-base10k_voxpopuli + 4-gram (demonstration below) 0.074 0.174 0.032 0.182 0.181 0.349 0.111 0.157

Transcription examples

Text Transcription
suco de uva e água misturam bem suco deúva e água misturão bem
culpa do dinheiro cupa do dinheiro
eu amo shooters call of duty é o meu favorito eu omo shúters cofedete é meu favorito
você pode explicar por que isso acontece você pode explicar por que isso ontece
no futuro você desejará ter começado a investir hoje no futuro você desejará a ter começado a investir hoje

Demonstration

MODEL_NAME = "lgris/bp500-base10k_voxpopuli" 

Imports and dependencies

%%capture
!pip install torch==1.8.2+cu111 torchvision==0.9.2+cu111 torchaudio===0.8.2 -f https://download.pytorch.org/whl/lts/1.8/torch_lts.html
!pip install datasets
!pip install jiwer
!pip install transformers
!pip install soundfile
!pip install pyctcdecode
!pip install https://github.com/kpu/kenlm/archive/master.zip
import jiwer
import torchaudio
from datasets import load_dataset, load_metric
from transformers import (
    Wav2Vec2ForCTC,
    Wav2Vec2Processor,
)
from pyctcdecode import build_ctcdecoder
import torch
import re
import sys

Helpers

chars_to_ignore_regex = '[\,\?\.\!\;\:\"]'  # noqa: W605

def map_to_array(batch):
    speech, _ = torchaudio.load(batch["path"])
    batch["speech"] = speech.squeeze(0).numpy() 
    batch["sampling_rate"] = 16_000 
    batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'")
    batch["target"] = batch["sentence"]
    return batch
def calc_metrics(truths, hypos):
    wers = []
    mers = []
    wils = []
    for t, h in zip(truths, hypos):
        try:
            wers.append(jiwer.wer(t, h))
            mers.append(jiwer.mer(t, h))
            wils.append(jiwer.wil(t, h))
        except: # Empty string?
            pass
    wer = sum(wers)/len(wers)
    mer = sum(mers)/len(mers)
    wil = sum(wils)/len(wils)
    return wer, mer, wil
def load_data(dataset):
    data_files = {'test': f'{dataset}/test.csv'}
    dataset = load_dataset('csv', data_files=data_files)["test"]
    return dataset.map(map_to_array)

Model

class STT:

    def __init__(self, 
                 model_name, 
                 device='cuda' if torch.cuda.is_available() else 'cpu', 
                 lm=None):
        self.model_name = model_name
        self.model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device)
        self.processor = Wav2Vec2Processor.from_pretrained(model_name)
        self.vocab_dict = self.processor.tokenizer.get_vocab()
        self.sorted_dict = {
            k.lower(): v for k, v in sorted(self.vocab_dict.items(), 
                                            key=lambda item: item[1])
        }
        self.device = device
        self.lm = lm
        if self.lm:            
            self.lm_decoder = build_ctcdecoder(
                list(self.sorted_dict.keys()),
                self.lm
            )

    def batch_predict(self, batch):
        features = self.processor(batch["speech"], 
                                  sampling_rate=batch["sampling_rate"][0], 
                                  padding=True, 
                                  return_tensors="pt")
        input_values = features.input_values.to(self.device)
        with torch.no_grad():
            logits = self.model(input_values).logits
        if self.lm:
            logits = logits.cpu().numpy()
            batch["predicted"] = []
            for sample_logits in logits:
                batch["predicted"].append(self.lm_decoder.decode(sample_logits))
        else:
            pred_ids = torch.argmax(logits, dim=-1)
            batch["predicted"] = self.processor.batch_decode(pred_ids)
        return batch

Download datasets

%%capture
!gdown --id 1HFECzIizf-bmkQRLiQD0QVqcGtOG5upI
!mkdir bp_dataset
!unzip bp_dataset -d bp_dataset/
%cd bp_dataset 
/content/bp_dataset

Tests

stt = STT(MODEL_NAME)

CETUC

ds = load_data('cetuc_dataset')
result = ds.map(stt.batch_predict, batched=True, batch_size=8) 
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
print("CETUC WER:", wer)
CETUC WER: 0.12096759949218888

Common Voice

ds = load_data('commonvoice_dataset')
result = ds.map(stt.batch_predict, batched=True, batch_size=8) 
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
print("CV WER:", wer)
CV WER: 0.24977003159495725

LaPS

ds = load_data('lapsbm_dataset')
result = ds.map(stt.batch_predict, batched=True, batch_size=8) 
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
print("Laps WER:", wer)
Laps WER: 0.039769570707070705

MLS

ds = load_data('mls_dataset')
result = ds.map(stt.batch_predict, batched=True, batch_size=8) 
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
print("MLS WER:", wer)
MLS WER: 0.2269637077788063

SID

ds = load_data('sid_dataset')
result = ds.map(stt.batch_predict, batched=True, batch_size=8) 
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
print("Sid WER:", wer)
Sid WER: 0.1691680138494731

TEDx

ds = load_data('tedx_dataset')
result = ds.map(stt.batch_predict, batched=True, batch_size=8) 
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
print("TEDx WER:", wer)
TEDx WER: 0.34908555859018014

VoxForge

ds = load_data('voxforge_dataset')
result = ds.map(stt.batch_predict, batched=True, batch_size=8) 
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
print("VoxForge WER:", wer)
VoxForge WER: 0.11649350649350651

Tests with LM

!rm -rf ~/.cache
!gdown --id 1GJIKseP5ZkTbllQVgOL98R4yYAcIySFP  # trained with wikipedia
stt = STT(MODEL_NAME, lm='pt-BR-wiki.word.4-gram.arpa')
# !gdown --id 1dLFldy7eguPtyJj5OAlI4Emnx0BpFywg  # trained with bp
# stt = STT(MODEL_NAME, lm='pt-BR.word.4-gram.arpa')

Cetuc

ds = load_data('cetuc_dataset')
result = ds.map(stt.batch_predict, batched=True, batch_size=8) 
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
print("CETUC WER:", wer)
CETUC WER: 0.07499558425787961

Common Voice

ds = load_data('commonvoice_dataset')
result = ds.map(stt.batch_predict, batched=True, batch_size=8) 
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
print("CV WER:", wer)
CV WER: 0.17442648452610307

LaPS

ds = load_data('lapsbm_dataset')
result = ds.map(stt.batch_predict, batched=True, batch_size=8) 
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
print("Laps WER:", wer)
Laps WER: 0.032774621212121206

MLS

ds = load_data('mls_dataset')
result = ds.map(stt.batch_predict, batched=True, batch_size=8) 
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
print("MLS WER:", wer)
MLS WER: 0.18213620321569274

SID

ds = load_data('sid_dataset')
result = ds.map(stt.batch_predict, batched=True, batch_size=8) 
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
print("Sid WER:", wer)
Sid WER: 0.18102544972868206

TEDx

ds = load_data('tedx_dataset')
result = ds.map(stt.batch_predict, batched=True, batch_size=8) 
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
print("TEDx WER:", wer)
TEDx WER: 0.3491402028105601

VoxForge

ds = load_data('voxforge_dataset')
result = ds.map(stt.batch_predict, batched=True, batch_size=8) 
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
print("VoxForge WER:", wer)
VoxForge WER: 0.11189529220779222
Downloads last month
16
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train lgris/bp500-base10k_voxpopuli

Evaluation results