Edit model card

English to Greek NMT

By the Hellenic Army Academy (SSE) and the Technical University of Crete (TUC)

  • source languages: en
  • target languages: el
  • licence: apache-2.0
  • dataset: Opus, CCmatrix
  • model: transformer(fairseq)
  • pre-processing: tokenization + BPE segmentation
  • metrics: bleu, chrf

Model description

Trained using the Fairseq framework, transformer_iwslt_de_en architecture.\ BPE segmentation (20k codes).\ Mixed-case model.

How to use

from transformers import FSMTTokenizer, FSMTForConditionalGeneration

mname = "lighteternal/SSE-TUC-mt-en-el-cased"

tokenizer = FSMTTokenizer.from_pretrained(mname)
model = FSMTForConditionalGeneration.from_pretrained(mname)

text = " 'Katerina', is the best name for a girl."

encoded = tokenizer.encode(text, return_tensors='pt')

outputs = model.generate(encoded, num_beams=5, num_return_sequences=5, early_stopping=True)
for i, output in enumerate(outputs):
    i += 1
    print(f"{i}: {output.tolist()}")
    
    decoded = tokenizer.decode(output, skip_special_tokens=True)
    print(f"{i}: {decoded}")

Training data

Consolidated corpus from Opus and CC-Matrix (~6.6GB in total)

Eval results

Results on Tatoeba testset (EN-EL):

BLEU chrF
76.9 0.733

Results on XNLI parallel (EN-EL):

BLEU chrF
65.4 0.624

BibTeX entry and citation info

Dimitris Papadopoulos, et al. "PENELOPIE: Enabling Open Information Extraction for the Greek Language through Machine Translation." (2021). Accepted at EACL 2021 SRW

Acknowledgement

The research work was supported by the Hellenic Foundation for Research and Innovation (HFRI) under the HFRI PhD Fellowship grant (Fellowship Number:50, 2nd call)

Downloads last month
34
Inference API
Examples