liwii's picture
fc-binary-prompt-model
6558a89 verified
|
raw
history blame
3.28 kB
metadata
license: apache-2.0
base_model: line-corporation/line-distilbert-base-japanese
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: fc-binary-prompt-model
    results: []

fc-binary-prompt-model

This model is a fine-tuned version of line-corporation/line-distilbert-base-japanese on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3462
  • Accuracy: 0.8652

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: tpu
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 306 0.3968 0.8594
0.425 2.0 612 0.3885 0.8594
0.425 3.0 918 0.3809 0.8594
0.4028 4.0 1224 0.3771 0.8594
0.3962 5.0 1530 0.3717 0.8594
0.3962 6.0 1836 0.3704 0.8594
0.3919 7.0 2142 0.3708 0.8594
0.3919 8.0 2448 0.3648 0.8594
0.3897 9.0 2754 0.3759 0.8613
0.3836 10.0 3060 0.3570 0.8594
0.3836 11.0 3366 0.3643 0.8613
0.3864 12.0 3672 0.3559 0.8613
0.3864 13.0 3978 0.3557 0.8613
0.3823 14.0 4284 0.3516 0.8613
0.3808 15.0 4590 0.3580 0.8613
0.3808 16.0 4896 0.3529 0.8613
0.3759 17.0 5202 0.3498 0.8613
0.3793 18.0 5508 0.3485 0.8613
0.3793 19.0 5814 0.3495 0.8613
0.3757 20.0 6120 0.3442 0.8613
0.3757 21.0 6426 0.3481 0.8613
0.3741 22.0 6732 0.3475 0.8633
0.3775 23.0 7038 0.3478 0.8633
0.3775 24.0 7344 0.3486 0.8633
0.375 25.0 7650 0.3489 0.8652
0.375 26.0 7956 0.3485 0.8652
0.37 27.0 8262 0.3446 0.8613
0.3712 28.0 8568 0.3463 0.8652
0.3712 29.0 8874 0.3466 0.8652
0.3748 30.0 9180 0.3462 0.8652

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.0+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.0