{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x000001A15E44EEF0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x000001A15E44EF80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x000001A15E44F010>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x000001A15E44F0A0>", "_build": "<function ActorCriticPolicy._build at 0x000001A15E44F130>", "forward": "<function ActorCriticPolicy.forward at 0x000001A15E44F1C0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x000001A15E44F250>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x000001A15E44F2E0>", "_predict": "<function ActorCriticPolicy._predict at 0x000001A15E44F370>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x000001A15E44F400>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x000001A15E44F490>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x000001A15E44F520>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x000001A15E447280>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688627180207732000, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJr2Gz3WJrs/1CE/Pkt6zL2ug4M8jfLoPQAAAAAAAAAAQ7SlPiAKVT++4As+ofuvvvIRXz5KqqK9AAAAAAAAAADNnPs7XN59OwssH70BDI6+kKZCO0K5IzwAAAAAAAAAAGbJxDy952Y8SDxaOYDBWb7PpQo9KGqzPAAAAAAAAAAAoOpfPk1/wj7hxqG+bWeavmEdgDvIGeW7AAAAAAAAAABAUz0+PE8eP2rPDr1Hmae+2k9QPSgrHL0AAAAAAAAAAHMV7z3sXNi7ZkHePPOP0zx40+M8i22svQAAgD8AAIA/xuQgvg+oNrxOROu6bljxuFdEnD0q/xc6AACAPwAAAAAN87A9BW/wPPZ8zb3Z2Ia+5rekPfBMO70AAAAAAAAAAK3PQD48lfo+D9SSvQzynr71q249g2ZtvAAAAAAAAAAA5pMsvR9W7Ltzihk80B0fPZqoRL0ZagE+AACAPwAAgD8A/7u8mGWvP41Kub4Pr6C+ETyMOTpyeL0AAAAAAAAAAABSa7zWVSc/PMEJPlLHtL4Coak9UPBjvQAAAAAAAAAAAPZKvam+XLzOwxy9wJGIPNHtvT2A1169AACAPwAAgD+KG32+AkOhP05afL4TTqu+KpGzvmyRwjwAAAAAAAAAAM3nKr4DJ2o/k+LNPGY2dr61E3W+ZI8jPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHILY/FBIFyMAWyUTRsBjAF0lEdAixamjTKDCnV9lChoBkdAbkj5ylvZRWgHTSwBaAhHQIsXPZkCmuV1fZQoaAZHQHGJkNe+mFdoB00RAWgIR0CLGE0XP7emdX2UKGgGR0ByFXCP6sQvaAdNHAFoCEdAixjq5CngpHV9lChoBkdAcMPqzZ6D5GgHTRMBaAhHQIsbO5z5oGp1fZQoaAZHQHDeU5p8F6loB00mAWgIR0CLG1gwXZXddX2UKGgGR0BzRNnUUfxMaAdNQwFoCEdAixuKNQ0oB3V9lChoBkdAcTXk9ECvHWgHTSMBaAhHQIscnsw+MZR1fZQoaAZHQGy92mgrYoRoB00ZAWgIR0CLHgmw7kn1dX2UKGgGR0Bvo+KMvRJFaAdNEAFoCEdAix72kJrtV3V9lChoBkdASQpegL7XQWgHS9NoCEdAiyCH2IwdsHV9lChoBkdAb4UOpbUwz2gHTSoBaAhHQIshN2Pkq+d1fZQoaAZHQHKQBWtEG7loB00lAWgIR0CLI4SidrftdX2UKGgGR0Bw4uTq0MPSaAdNCQFoCEdAiyUfr0J4S3V9lChoBkdAcBqQsf7rLWgHTScBaAhHQIsmMTN+so51fZQoaAZHQHBe2Q8wHqxoB00yAWgIR0CLJnB55Z8sdX2UKGgGR0BzCmOo5xR3aAdNDAFoCEdAiyZsZYPoV3V9lChoBkdAclqORkmQbWgHTW0BaAhHQIsnwyGi5/d1fZQoaAZHQHEovC/GlyloB0v+aAhHQIsopcVxjrl1fZQoaAZHQG4lcUdq+JxoB00EAWgIR0CLKQzdDYywdX2UKGgGR0BykQPGyX2NaAdNGAFoCEdAiypSGi5/b3V9lChoBkdAcLvYwIt16mgHTU8BaAhHQIsqjc/MW451fZQoaAZHQHPsPHPu5SZoB0v+aAhHQIsrgsGxD9h1fZQoaAZHQG7uHxri2lVoB0v9aAhHQIssWx8lXzV1fZQoaAZHQHJdTgEU0vZoB00wAWgIR0CLLJ56+nIidX2UKGgGR0BxMBqKxcFAaAdNKwFoCEdAizBwzk6tDHV9lChoBkdAcD+wuuieumgHTSIBaAhHQIswo9X9zfd1fZQoaAZHQHEB6UzKs+5oB00RAWgIR0CLM5UutfXxdX2UKGgGR0Buo+c8TzunaAdNCQFoCEdAizRxWkrPMXV9lChoBkdAcfBuQIUrTmgHTSABaAhHQIs1hzkp7Tl1fZQoaAZHQGpfhhpg1FZoB00kAWgIR0CLNgK/EfkndX2UKGgGR0BxxZpZfUnYaAdNKwFoCEdAizfubI91U3V9lChoBkdAbpIVM23rlmgHTR0BaAhHQIs4meJ53Tx1fZQoaAZHQHA8Htv4ubtoB007AWgIR0CLOeXZXdTHdX2UKGgGR0BwcvUy57PZaAdNKQFoCEdAizq0Aksz23V9lChoBkdAcMU0QK8cuWgHTTABaAhHQIs7V1ZDArR1fZQoaAZHQHBrZIMBp6BoB00kAWgIR0CLO7dLxqfwdX2UKGgGR0ByRLs/pt78aAdNEAFoCEdAizvR2B8QZnV9lChoBkdAcgfX6qKgqWgHTcEBaAhHQIs8GIKtxMp1fZQoaAZHQHGmdpyp71JoB006AWgIR0CLPa3EyckMdX2UKGgGR0BQrhBE8aGYaAdN6ANoCEdAiz5IHLRrrXV9lChoBkdAb8ajwhGH6GgHTSIBaAhHQItAMR3/xUh1fZQoaAZHQHGit7OVxCJoB0v0aAhHQItA1BSk0rN1fZQoaAZHQHDNqw6hg3NoB00vAWgIR0CLQQkqMFUydX2UKGgGR0BwzRBmf5DaaAdNAgFoCEdAi2Og+hXbNHV9lChoBkdAb915KODJ2mgHTRsBaAhHQItln5DZ13d1fZQoaAZHQG7BOf29L6FoB00hAWgIR0CLZlBJI1+BdX2UKGgGR0BxoMGpuMuOaAdNCgFoCEdAi2dZpztCzHV9lChoBkdAbbYXjU/fO2gHTSYBaAhHQItoOU6gdwN1fZQoaAZHQHBUCkO7QLNoB00BAWgIR0CLaWBVdX1bdX2UKGgGR0BySAurZJ05aAdL/GgIR0CLadn8KohqdX2UKGgGR0BwmHNorWiDaAdNBQFoCEdAi2n0hV2ic3V9lChoBkdAckP5CngpB2gHTTEBaAhHQItqj6YVqN91fZQoaAZHQG3EH003wTdoB00FAWgIR0CLbKViWmgrdX2UKGgGR0ByZ73cpLElaAdNVwFoCEdAi26NnGsFMnV9lChoBkdAcLZFEiMYM2gHTUUBaAhHQItvpjUd7v51fZQoaAZHQHBre6RQrMFoB00SAWgIR0CLb7iTdLxqdX2UKGgGR0Bv2ZPwd8zAaAdNhAFoCEdAi2/xvegte3V9lChoBkdAcOtmjCYTkGgHTRgBaAhHQItw3UYsNDt1fZQoaAZHQHIFfGEPDpFoB00lAWgIR0CLcVK6FuejdX2UKGgGR0BxYGvMbFS9aAdNCwFoCEdAi3F3d0q6OHV9lChoBkdAcuHaw2VE/mgHTR4BaAhHQIt1Lw6QvHt1fZQoaAZHQHAHHOv+wTxoB00vAWgIR0CLdVfhuO0cdX2UKGgGR0BwUXwlSjxkaAdNAAFoCEdAi3WVHe7+UHV9lChoBkdAcI55paiblWgHTRABaAhHQIt4B8IAwPB1fZQoaAZHQGyrwl0HQhRoB00RAWgIR0CLeC2Ifr8jdX2UKGgGR0BxhzT/hl19aAdNJAFoCEdAi3iZ88cMmXV9lChoBkdATDEMCtA9m2gHS8hoCEdAi3oMiB5HE3V9lChoBkdAcdoxoIv8ImgHTTYBaAhHQIt6vBP9DQZ1fZQoaAZHQHCZPfO2RaJoB00IAWgIR0CLfCz544ZNdX2UKGgGR0Bw+oZqEeySaAdNBAFoCEdAi30Ja7mMfnV9lChoBkdAb69yRSxZ+2gHTTwBaAhHQIt9NEiMYMx1fZQoaAZHQHCX18Ti84BoB0v/aAhHQIt+dsrNGEx1fZQoaAZHQHCOcaKk2xZoB00lAWgIR0CLfromois5dX2UKGgGR0BtXp7AtWdVaAdNBAFoCEdAi37kAPuognV9lChoBkdAb5cf4h2W6mgHTUMBaAhHQIuBc0cfeUJ1fZQoaAZHQE5ZeSB9TgloB0vNaAhHQIuCyzmfXf91fZQoaAZHQHAXVYhdMTNoB00TAWgIR0CLg6CJ40MxdX2UKGgGR0Byqd4Uvf0maAdNEgFoCEdAi4O7ExZdOnV9lChoBkdAcJRIwM6RyWgHS/9oCEdAi4Wf3FkxynV9lChoBkdAcaLSZBsyi2gHTQcBaAhHQIuGeUD+zdF1fZQoaAZHQHITdcW0qpdoB01NAWgIR0CLhyLS/j82dX2UKGgGR0BxQRIZqEeyaAdNDgFoCEdAi4hCqp97W3V9lChoBkdAcSojFhoduGgHTQoBaAhHQIuKI1Nxlxx1fZQoaAZHQG5YQ3xWkrRoB00QAWgIR0CLi4Oc2BJ7dX2UKGgGR0BxQXv6TGHYaAdNHAFoCEdAi4wEOiFj/nV9lChoBkdATpQpz90ihWgHS8poCEdAi4w5T6zmfXV9lChoBkdAbfxpDeCTU2gHTQABaAhHQIuMO1pj+aV1fZQoaAZHQG8LcPnSv1VoB00FAWgIR0CLjKR/3FkydX2UKGgGR0BxG5JnQID6aAdNVQFoCEdAi4zCu2Zy/HV9lChoBkdAc2jV+Zw4sGgHTTYBaAhHQIuOeYfGMn91fZQoaAZHQHLIjVc2R7toB00QAWgIR0CLkMBg/keZdX2UKGgGR0BwXqCOFQEZaAdNIgFoCEdAi5Jz6i0v5HV9lChoBkdAcA2LdvbXYmgHTSIBaAhHQIuSjor4Fid1fZQoaAZHQG4gT4+KTB9oB00OAWgIR0CLk02iL2pRdX2UKGgGR0Bx3tygf2boaAdNDgFoCEdAi5QcaXKKYXV9lChoBkdAb/m+fRNRFmgHTRIBaAhHQIuU8bJfYz11fZQoaAZHQG40has6q81oB00CAWgIR0CLlTstTUAldX2UKGgGR0Byn4BgeA/caAdL62gIR0CLlx1EE1VHdX2UKGgGR0BxPgU1yeZoaAdNEAFoCEdAi5e7Hp8neHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVbwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjD9EOlxhbmFjb25kYVxsaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjARmdW5jlEuEQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaA11Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVbwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjD9EOlxhbmFjb25kYVxsaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjARmdW5jlEuEQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaA11Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Windows-10-10.0.19044-SP0 10.0.19044", "Python": "3.10.9", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "1.6.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.19.0"}} |