|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
- ja |
|
programming_language: |
|
- C |
|
- C++ |
|
- C# |
|
- Go |
|
- Java |
|
- JavaScript |
|
- Lua |
|
- PHP |
|
- Python |
|
- Ruby |
|
- Rust |
|
- Scala |
|
- TypeScript |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
inference: false |
|
--- |
|
|
|
# llm-jp-3-172b-alpha1 |
|
|
|
This repository provides large language models developed by the [Research and Development Center for Large Language Models](https://llmc.nii.ac.jp/) at the [National Institute of Informatics](https://www.nii.ac.jp/en/). |
|
|
|
The development was partially supported by [GENIAC](https://www.meti.go.jp/policy/mono_info_service/geniac/index.html). |
|
|
|
| Model Variants | |
|
| :--- | |
|
| [llm-jp-3-172b-alpha1](https://huggingface.co/llm-jp/llm-jp-3-172b-alpha1) | |
|
| [llm-jp-3-172b-alpha1-instruct](https://huggingface.co/llm-jp/llm-jp-3-172b-alpha1-instruct) | |
|
| [llm-jp-3-172b-alpha2](https://huggingface.co/llm-jp/llm-jp-3-172b-alpha2) | |
|
| [llm-jp-3-172b-alpha2-instruct](https://huggingface.co/llm-jp/llm-jp-3-172b-alpha2-instruct) | |
|
| [llm-jp-3-172b-beta1](https://huggingface.co/llm-jp/llm-jp-3-172b-beta1) | |
|
| [llm-jp-3-172b-beta1-instruct](https://huggingface.co/llm-jp/llm-jp-3-172b-beta1-instruct) | |
|
|
|
|
|
Checkpoints format: Hugging Face Transformers |
|
|
|
|
|
**Caution!: While it has been confirmed that the performance of LLM-jp-3 172B alpha1 and alpha2 is significantly lower than previously released models, we believe they can still be useful for research purposes and are making them available to the public. |
|
For more information, please visit [this link](https://llmc.nii.ac.jp/en/topics/llm-jp-3-172b-alpha1-alpha2/).** |
|
|
|
|
|
## Required Libraries and Their Versions |
|
|
|
- torch>=2.3.0 |
|
- transformers>=4.40.1 |
|
- tokenizers>=0.19.1 |
|
- accelerate>=0.29.3 |
|
- flash-attn>=2.5.8 |
|
|
|
## Usage |
|
|
|
```python |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
tokenizer = AutoTokenizer.from_pretrained("llm-jp/llm-jp-3-172b-alpha1") |
|
model = AutoModelForCausalLM.from_pretrained("llm-jp/llm-jp-3-172b-alpha1", device_map="auto", torch_dtype=torch.bfloat16) |
|
text = "自然言語処理とは何か" |
|
tokenized_input = tokenizer.encode(text, add_special_tokens=False, return_tensors="pt").to(model.device) |
|
with torch.no_grad(): |
|
output = model.generate( |
|
tokenized_input, |
|
max_new_tokens=100, |
|
do_sample=True, |
|
top_p=0.95, |
|
temperature=0.7, |
|
repetition_penalty=1.05, |
|
)[0] |
|
print(tokenizer.decode(output)) |
|
``` |
|
|
|
|
|
## Model Details |
|
|
|
- **Model type:** Transformer-based Language Model |
|
- **Total seen tokens:**: |
|
- alpha1: 0.7T |
|
- alpha2: 1.4T |
|
- beta1: 0.7T |
|
|
|
|
|
|Params|Layers|Hidden size|Heads|Context length| |
|
|:---:|:---:|:---:|:---:|:---:| |
|
|172b|96|12288|96|4096| |
|
|
|
## Tokenizer |
|
|
|
The tokenizer of this model is based on [huggingface/tokenizers](https://github.com/huggingface/tokenizers) Unigram byte-fallback model. |
|
The vocabulary entries were converted from [`llm-jp-tokenizer v3.0`](https://github.com/llm-jp/llm-jp-tokenizer/releases/tag/v3.0b2). |
|
Please refer to [README.md](https://github.com/llm-jp/llm-jp-tokenizer) of `llm-jp-tokenizer` for details on the vocabulary construction procedure (the pure SentencePiece training does not reproduce our vocabulary). |
|
|
|
## Datasets |
|
|
|
### Pre-training |
|
|
|
The models have been pre-trained using a blend of the following datasets. |
|
|
|
| Language | Dataset | Tokens| |
|
|:---|:---|---:| |
|
|Japanese|[Wikipedia](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|2.6B |
|
||[Common Crawl](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|762.8B |
|
||[WARP/PDF](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|282.1B |
|
||[WARP/HTML](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|2.7B |
|
||[Kaken](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|1.8B |
|
|English|[Wikipedia](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|4.7B |
|
||[Dolma/CC-head](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|608.5B |
|
||[Dolma/C4](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|181.6B |
|
||[Dolma/Reddit](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|83.1B |
|
||[Dolma/PeS2o](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|62.9B |
|
||[Dolma/Gutenberg](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|5.5B |
|
||[Dolma/Wiki](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|3.9B |
|
|Code|[The Stack](https://huggingface.co/datasets/bigcode/the-stack)|114.1B |
|
|Chinese|[Wikipedia](https://huggingface.co/datasets/bigcode/the-stack)|0.8B |
|
|Korean|[Wikipedia](https://huggingface.co/datasets/bigcode/the-stack)|0.3B |
|
|
|
### Instruction tuning |
|
|
|
The models have been fine-tuned on the following datasets. |
|
|
|
| Language | Dataset | description | |
|
|:---|:---|:---| |
|
|Japanese|[ichikara-instruction-004-002](https://liat-aip.sakura.ne.jp/wp/llm%e3%81%ae%e3%81%9f%e3%82%81%e3%81%ae%e6%97%a5%e6%9c%ac%e8%aa%9e%e3%82%a4%e3%83%b3%e3%82%b9%e3%83%88%e3%83%a9%e3%82%af%e3%82%b7%e3%83%a7%e3%83%b3%e3%83%87%e3%83%bc%e3%82%bf%e4%bd%9c%e6%88%90/llm%e3%81%ae%e3%81%9f%e3%82%81%e3%81%ae%e6%97%a5%e6%9c%ac%e8%aa%9e%e3%82%a4%e3%83%b3%e3%82%b9%e3%83%88%e3%83%a9%e3%82%af%e3%82%b7%e3%83%a7%e3%83%b3%e3%83%87%e3%83%bc%e3%82%bf-%e5%85%ac%e9%96%8b/)| A manually constructed Japanese instruction dataset | |
|
| |[answer-carefully-001](https://liat-aip.sakura.ne.jp/wp/answercarefully-dataset/)| A manually constructed Japanese instruction dataset focusing on LLMs' safety | |
|
| |[databricks-dolly-15k-ja](https://huggingface.co/datasets/llm-jp/databricks-dolly-15k-ja)| [databricks-dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) translated into Japanese using DeepL | |
|
| |[oasst1-21k-ja](https://huggingface.co/datasets/llm-jp/oasst1-21k-ja)| A subset of [oasst1](https://huggingface.co/datasets/OpenAssistant/oasst1) translated into Japanese using DeepL | |
|
| |[oasst2-33k-ja](https://huggingface.co/datasets/llm-jp/oasst2-33k-ja)| A subset of [oasst2](https://huggingface.co/datasets/OpenAssistant/oasst2) translated into Japanese using DeepL | |
|
| |aya-dataset-ja| A Japanese subset of [aya_dataset](https://huggingface.co/datasets/CohereForAI/aya_dataset) | |
|
| |ichikara-instruction-format| A small amount of instruction dataset edited from ichikara-instruction, with some constraints on the output format. | |
|
|English |[databricks-dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) | - | |
|
| |[oasst1-21k-en](https://huggingface.co/datasets/llm-jp/oasst1-21k-en)| A subset of [oasst1](https://huggingface.co/datasets/OpenAssistant/oasst1) | |
|
| |[oasst2-33k-en](https://huggingface.co/datasets/llm-jp/oasst2-33k-en)| A subset of [oasst2](https://huggingface.co/datasets/OpenAssistant/oasst2) | |
|
| |[Daring-Anteater](https://huggingface.co/datasets/nvidia/Daring-Anteater)| - | |
|
| |[FLAN](https://huggingface.co/datasets/Open-Orca/FLAN) | We used sampled one. | |
|
|
|
## Risks and Limitations |
|
|
|
The models released here are in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations. |
|
|
|
|
|
## Send Questions to |
|
|
|
llm-jp(at)nii.ac.jp |
|
|
|
|
|
## License |
|
|
|
[Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0) |
|
|
|
|
|
## Model Card Authors |
|
|
|
*The names are listed in alphabetical order.* |
|
|
|
Hirokazu Kiyomaru and Takashi Kodama. |