Taka008's picture
Update README.md
e6acbac verified
---
license: apache-2.0
language:
- en
- ja
programming_language:
- C
- C++
- C#
- Go
- Java
- JavaScript
- Lua
- PHP
- Python
- Ruby
- Rust
- Scala
- TypeScript
library_name: transformers
pipeline_tag: text-generation
inference: false
---
# llm-jp-3-172b-alpha1
This repository provides large language models developed by the [Research and Development Center for Large Language Models](https://llmc.nii.ac.jp/) at the [National Institute of Informatics](https://www.nii.ac.jp/en/).
The development was partially supported by [GENIAC](https://www.meti.go.jp/policy/mono_info_service/geniac/index.html).
| Model Variants |
| :--- |
| [llm-jp-3-172b-alpha1](https://huggingface.co/llm-jp/llm-jp-3-172b-alpha1) |
| [llm-jp-3-172b-alpha1-instruct](https://huggingface.co/llm-jp/llm-jp-3-172b-alpha1-instruct) |
| [llm-jp-3-172b-alpha2](https://huggingface.co/llm-jp/llm-jp-3-172b-alpha2) |
| [llm-jp-3-172b-alpha2-instruct](https://huggingface.co/llm-jp/llm-jp-3-172b-alpha2-instruct) |
| [llm-jp-3-172b-beta1](https://huggingface.co/llm-jp/llm-jp-3-172b-beta1) |
| [llm-jp-3-172b-beta1-instruct](https://huggingface.co/llm-jp/llm-jp-3-172b-beta1-instruct) |
Checkpoints format: Hugging Face Transformers
**Caution!: While it has been confirmed that the performance of LLM-jp-3 172B alpha1 and alpha2 is significantly lower than previously released models, we believe they can still be useful for research purposes and are making them available to the public.
For more information, please visit [this link](https://llmc.nii.ac.jp/en/topics/llm-jp-3-172b-alpha1-alpha2/).**
## Required Libraries and Their Versions
- torch>=2.3.0
- transformers>=4.40.1
- tokenizers>=0.19.1
- accelerate>=0.29.3
- flash-attn>=2.5.8
## Usage
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("llm-jp/llm-jp-3-172b-alpha1")
model = AutoModelForCausalLM.from_pretrained("llm-jp/llm-jp-3-172b-alpha1", device_map="auto", torch_dtype=torch.bfloat16)
text = "自然言語処理とは何か"
tokenized_input = tokenizer.encode(text, add_special_tokens=False, return_tensors="pt").to(model.device)
with torch.no_grad():
output = model.generate(
tokenized_input,
max_new_tokens=100,
do_sample=True,
top_p=0.95,
temperature=0.7,
repetition_penalty=1.05,
)[0]
print(tokenizer.decode(output))
```
## Model Details
- **Model type:** Transformer-based Language Model
- **Total seen tokens:**:
- alpha1: 0.7T
- alpha2: 1.4T
- beta1: 0.7T
|Params|Layers|Hidden size|Heads|Context length|
|:---:|:---:|:---:|:---:|:---:|
|172b|96|12288|96|4096|
## Tokenizer
The tokenizer of this model is based on [huggingface/tokenizers](https://github.com/huggingface/tokenizers) Unigram byte-fallback model.
The vocabulary entries were converted from [`llm-jp-tokenizer v3.0`](https://github.com/llm-jp/llm-jp-tokenizer/releases/tag/v3.0b2).
Please refer to [README.md](https://github.com/llm-jp/llm-jp-tokenizer) of `llm-jp-tokenizer` for details on the vocabulary construction procedure (the pure SentencePiece training does not reproduce our vocabulary).
## Datasets
### Pre-training
The models have been pre-trained using a blend of the following datasets.
| Language | Dataset | Tokens|
|:---|:---|---:|
|Japanese|[Wikipedia](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|2.6B
||[Common Crawl](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|762.8B
||[WARP/PDF](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|282.1B
||[WARP/HTML](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|2.7B
||[Kaken](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|1.8B
|English|[Wikipedia](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|4.7B
||[Dolma/CC-head](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|608.5B
||[Dolma/C4](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|181.6B
||[Dolma/Reddit](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|83.1B
||[Dolma/PeS2o](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|62.9B
||[Dolma/Gutenberg](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|5.5B
||[Dolma/Wiki](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|3.9B
|Code|[The Stack](https://huggingface.co/datasets/bigcode/the-stack)|114.1B
|Chinese|[Wikipedia](https://huggingface.co/datasets/bigcode/the-stack)|0.8B
|Korean|[Wikipedia](https://huggingface.co/datasets/bigcode/the-stack)|0.3B
### Instruction tuning
The models have been fine-tuned on the following datasets.
| Language | Dataset | description |
|:---|:---|:---|
|Japanese|[ichikara-instruction-004-002](https://liat-aip.sakura.ne.jp/wp/llm%e3%81%ae%e3%81%9f%e3%82%81%e3%81%ae%e6%97%a5%e6%9c%ac%e8%aa%9e%e3%82%a4%e3%83%b3%e3%82%b9%e3%83%88%e3%83%a9%e3%82%af%e3%82%b7%e3%83%a7%e3%83%b3%e3%83%87%e3%83%bc%e3%82%bf%e4%bd%9c%e6%88%90/llm%e3%81%ae%e3%81%9f%e3%82%81%e3%81%ae%e6%97%a5%e6%9c%ac%e8%aa%9e%e3%82%a4%e3%83%b3%e3%82%b9%e3%83%88%e3%83%a9%e3%82%af%e3%82%b7%e3%83%a7%e3%83%b3%e3%83%87%e3%83%bc%e3%82%bf-%e5%85%ac%e9%96%8b/)| A manually constructed Japanese instruction dataset |
| |[answer-carefully-001](https://liat-aip.sakura.ne.jp/wp/answercarefully-dataset/)| A manually constructed Japanese instruction dataset focusing on LLMs' safety |
| |[databricks-dolly-15k-ja](https://huggingface.co/datasets/llm-jp/databricks-dolly-15k-ja)| [databricks-dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) translated into Japanese using DeepL |
| |[oasst1-21k-ja](https://huggingface.co/datasets/llm-jp/oasst1-21k-ja)| A subset of [oasst1](https://huggingface.co/datasets/OpenAssistant/oasst1) translated into Japanese using DeepL |
| |[oasst2-33k-ja](https://huggingface.co/datasets/llm-jp/oasst2-33k-ja)| A subset of [oasst2](https://huggingface.co/datasets/OpenAssistant/oasst2) translated into Japanese using DeepL |
| |aya-dataset-ja| A Japanese subset of [aya_dataset](https://huggingface.co/datasets/CohereForAI/aya_dataset) |
| |ichikara-instruction-format| A small amount of instruction dataset edited from ichikara-instruction, with some constraints on the output format. |
|English |[databricks-dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) | - |
| |[oasst1-21k-en](https://huggingface.co/datasets/llm-jp/oasst1-21k-en)| A subset of [oasst1](https://huggingface.co/datasets/OpenAssistant/oasst1) |
| |[oasst2-33k-en](https://huggingface.co/datasets/llm-jp/oasst2-33k-en)| A subset of [oasst2](https://huggingface.co/datasets/OpenAssistant/oasst2) |
| |[Daring-Anteater](https://huggingface.co/datasets/nvidia/Daring-Anteater)| - |
| |[FLAN](https://huggingface.co/datasets/Open-Orca/FLAN) | We used sampled one. |
## Risks and Limitations
The models released here are in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations.
## Send Questions to
llm-jp(at)nii.ac.jp
## License
[Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
## Model Card Authors
*The names are listed in alphabetical order.*
Hirokazu Kiyomaru and Takashi Kodama.