mt5-base-dequad-qag / README.md
asahi417's picture
model update
5571a3f
metadata
license: cc-by-4.0
metrics:
  - bleu4
  - meteor
  - rouge-l
  - bertscore
  - moverscore
language: de
datasets:
  - lmqg/qag_dequad
pipeline_tag: text2text-generation
tags:
  - questions and answers generation
widget:
  - text: >-
      Empfangs- und Sendeantenne sollen in ihrer Polarisation übereinstimmen,
      andernfalls wird die Signalübertragung stark gedämpft. 
    example_title: Questions & Answers Generation Example 1
model-index:
  - name: lmqg/mt5-base-dequad-qag
    results:
      - task:
          name: Text2text Generation
          type: text2text-generation
        dataset:
          name: lmqg/qag_dequad
          type: default
          args: default
        metrics:
          - name: QAAlignedF1Score-BERTScore (Question & Answer Generation)
            type: qa_aligned_f1_score_bertscore_question_answer_generation
            value: 0.1
          - name: QAAlignedRecall-BERTScore (Question & Answer Generation)
            type: qa_aligned_recall_bertscore_question_answer_generation
            value: 0.1
          - name: QAAlignedPrecision-BERTScore (Question & Answer Generation)
            type: qa_aligned_precision_bertscore_question_answer_generation
            value: 0.1
          - name: QAAlignedF1Score-MoverScore (Question & Answer Generation)
            type: qa_aligned_f1_score_moverscore_question_answer_generation
            value: 0.1
          - name: QAAlignedRecall-MoverScore (Question & Answer Generation)
            type: qa_aligned_recall_moverscore_question_answer_generation
            value: 0.1
          - name: QAAlignedPrecision-MoverScore (Question & Answer Generation)
            type: qa_aligned_precision_moverscore_question_answer_generation
            value: 0.1

Model Card of lmqg/mt5-base-dequad-qag

This model is fine-tuned version of google/mt5-base for question & answer pair generation task on the lmqg/qag_dequad (dataset_name: default) via lmqg.

Overview

Usage

from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="de", model="lmqg/mt5-base-dequad-qag")

# model prediction
question_answer_pairs = model.generate_qa("das erste weltweit errichtete Hermann Brehmer 1855 im niederschlesischen ''Görbersdorf'' (heute Sokołowsko, Polen).")
  • With transformers
from transformers import pipeline

pipe = pipeline("text2text-generation", "lmqg/mt5-base-dequad-qag")
output = pipe("Empfangs- und Sendeantenne sollen in ihrer Polarisation übereinstimmen, andernfalls wird die Signalübertragung stark gedämpft. ")

Evaluation

Score Type Dataset
QAAlignedF1Score (BERTScore) 0.1 default lmqg/qag_dequad
QAAlignedF1Score (MoverScore) 0.1 default lmqg/qag_dequad
QAAlignedPrecision (BERTScore) 0.1 default lmqg/qag_dequad
QAAlignedPrecision (MoverScore) 0.1 default lmqg/qag_dequad
QAAlignedRecall (BERTScore) 0.1 default lmqg/qag_dequad
QAAlignedRecall (MoverScore) 0.1 default lmqg/qag_dequad

Training hyperparameters

The following hyperparameters were used during fine-tuning:

  • dataset_path: lmqg/qag_dequad
  • dataset_name: default
  • input_types: ['paragraph']
  • output_types: ['questions_answers']
  • prefix_types: None
  • model: google/mt5-base
  • max_length: 512
  • max_length_output: 256
  • epoch: 11
  • batch: 2
  • lr: 0.0001
  • fp16: False
  • random_seed: 1
  • gradient_accumulation_steps: 32
  • label_smoothing: 0.15

The full configuration can be found at fine-tuning config file.

Citation

@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}