Edit model card

Model Card of lmqg/mt5-small-koquad-qag

This model is fine-tuned version of google/mt5-small for question & answer pair generation task on the lmqg/qag_koquad (dataset_name: default) via lmqg.

Overview

Usage

from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="ko", model="lmqg/mt5-small-koquad-qag")

# model prediction
question_answer_pairs = model.generate_qa("1990년 영화 《 남부군 》에서 단역으로 영화배우 첫 데뷔에 이어 같은 해 KBS 드라마 《지구인》에서 단역으로 출연하였고 이듬해 MBC 《여명의 눈동자》를 통해 단역으로 출연하였다.")
  • With transformers
from transformers import pipeline

pipe = pipeline("text2text-generation", "lmqg/mt5-small-koquad-qag")
output = pipe("1990년 영화 《 남부군 》에서 단역으로 영화배우 첫 데뷔에 이어 같은 해 KBS 드라마 《지구인》에서 단역으로 출연하였고 이듬해 MBC 《여명의 눈동자》를 통해 단역으로 출연하였다.")

Evaluation

Score Type Dataset
QAAlignedF1Score (BERTScore) 74.23 default lmqg/qag_koquad
QAAlignedF1Score (MoverScore) 75.06 default lmqg/qag_koquad
QAAlignedPrecision (BERTScore) 74.29 default lmqg/qag_koquad
QAAlignedPrecision (MoverScore) 75.14 default lmqg/qag_koquad
QAAlignedRecall (BERTScore) 74.2 default lmqg/qag_koquad
QAAlignedRecall (MoverScore) 75.04 default lmqg/qag_koquad

Training hyperparameters

The following hyperparameters were used during fine-tuning:

  • dataset_path: lmqg/qag_koquad
  • dataset_name: default
  • input_types: ['paragraph']
  • output_types: ['questions_answers']
  • prefix_types: None
  • model: google/mt5-small
  • max_length: 512
  • max_length_output: 256
  • epoch: 13
  • batch: 8
  • lr: 0.0005
  • fp16: False
  • random_seed: 1
  • gradient_accumulation_steps: 16
  • label_smoothing: 0.0

The full configuration can be found at fine-tuning config file.

Citation

@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}
Downloads last month
14
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train lmqg/mt5-small-koquad-qag

Evaluation results

  • QAAlignedF1Score-BERTScore (Question & Answer Generation) on lmqg/qag_koquad
    self-reported
    74.230
  • QAAlignedRecall-BERTScore (Question & Answer Generation) on lmqg/qag_koquad
    self-reported
    74.200
  • QAAlignedPrecision-BERTScore (Question & Answer Generation) on lmqg/qag_koquad
    self-reported
    74.290
  • QAAlignedF1Score-MoverScore (Question & Answer Generation) on lmqg/qag_koquad
    self-reported
    75.060
  • QAAlignedRecall-MoverScore (Question & Answer Generation) on lmqg/qag_koquad
    self-reported
    75.040
  • QAAlignedPrecision-MoverScore (Question & Answer Generation) on lmqg/qag_koquad
    self-reported
    75.140