metadata
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: zh
datasets:
- lmqg/qg_zhquad
pipeline_tag: text2text-generation
tags:
- question generation
- answer extraction
widget:
- text: >-
generate question:
南安普敦的警察服务由汉普郡警察提供。南安普敦行动的主要基地是一座新的八层专用建筑,造价3000万英镑。该建筑位于南路,2011年启用,靠近<hl>
南安普敦中央
<hl>火车站。此前,南安普顿市中心的行动位于市民中心西翼,但由于设施老化,加上计划在旧警察局和地方法院建造一座新博物馆,因此必须搬迁。在Portswood、Banister
Park、Hille和Shirley还有其他警察局,在南安普顿中央火车站还有一个英国交通警察局。
example_title: Question Generation Example 1
- text: >-
generate question: 芝加哥大学的<hl> 1960—61 <hl>集团理论年汇集了Daniel Gorenstein、John
G. Thompson和Walter
Feit等团体理论家,奠定了一个合作的基础,借助于其他众多数学家的输入,1982中对所有有限的简单群进行了分类。这个项目的规模超过了以往的数学研究,无论是证明的长度还是研究人员的数量。目前正在进行研究,以简化这一分类的证明。如今,群论仍然是一个非常活跃的数学分支,影响着许多其他领域
example_title: Question Generation Example 2
- text: >-
extract answers: 南安普敦的警察服务由汉普郡警察提供。 南安普敦行动的主要基地是一座新的八层专用建筑,造价3000万英镑。 <hl>
该建筑位于南路,2011年启用,靠近 南安普敦中央 火车站。 <hl>
此前,南安普顿市中心的行动位于市民中心西翼,但由于设施老化,加上计划在旧警察局和地方法院建造一座新博物馆,因此必须搬迁。
在Portswood、Banister Park、Hille和Shirley还有其他警察局,在南安普顿中央火车站还有一个英国交通警察局。
example_title: Answer Extraction Example 1
model-index:
- name: lmqg/mt5-small-zhquad-qg-ae
results:
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_zhquad
type: default
args: default
metrics:
- name: BLEU4 (Question Generation)
type: bleu4_question_generation
value: 13.98
- name: ROUGE-L (Question Generation)
type: rouge_l_question_generation
value: 33.17
- name: METEOR (Question Generation)
type: meteor_question_generation
value: 22.88
- name: BERTScore (Question Generation)
type: bertscore_question_generation
value: 76.64
- name: MoverScore (Question Generation)
type: moverscore_question_generation
value: 57.03
- name: >-
QAAlignedF1Score-BERTScore (Question & Answer Generation (with
Gold Answer))
type: >-
qa_aligned_f1_score_bertscore_question_answer_generation_with_gold_answer
value: 78.55
- name: >-
QAAlignedRecall-BERTScore (Question & Answer Generation (with Gold
Answer))
type: >-
qa_aligned_recall_bertscore_question_answer_generation_with_gold_answer
value: 82.09
- name: >-
QAAlignedPrecision-BERTScore (Question & Answer Generation (with
Gold Answer))
type: >-
qa_aligned_precision_bertscore_question_answer_generation_with_gold_answer
value: 75.41
- name: >-
QAAlignedF1Score-MoverScore (Question & Answer Generation (with
Gold Answer))
type: >-
qa_aligned_f1_score_moverscore_question_answer_generation_with_gold_answer
value: 53.47
- name: >-
QAAlignedRecall-MoverScore (Question & Answer Generation (with
Gold Answer))
type: >-
qa_aligned_recall_moverscore_question_answer_generation_with_gold_answer
value: 55.73
- name: >-
QAAlignedPrecision-MoverScore (Question & Answer Generation (with
Gold Answer))
type: >-
qa_aligned_precision_moverscore_question_answer_generation_with_gold_answer
value: 51.5
- name: BLEU4 (Answer Extraction)
type: bleu4_answer_extraction
value: 81.9
- name: ROUGE-L (Answer Extraction)
type: rouge_l_answer_extraction
value: 95.05
- name: METEOR (Answer Extraction)
type: meteor_answer_extraction
value: 69.99
- name: BERTScore (Answer Extraction)
type: bertscore_answer_extraction
value: 99.69
- name: MoverScore (Answer Extraction)
type: moverscore_answer_extraction
value: 98.34
- name: AnswerF1Score (Answer Extraction)
type: answer_f1_score__answer_extraction
value: 93.58
- name: AnswerExactMatch (Answer Extraction)
type: answer_exact_match_answer_extraction
value: 93.5
Model Card of lmqg/mt5-small-zhquad-qg-ae
This model is fine-tuned version of google/mt5-small for question generation and answer extraction jointly on the lmqg/qg_zhquad (dataset_name: default) via lmqg
.
Overview
- Language model: google/mt5-small
- Language: zh
- Training data: lmqg/qg_zhquad (default)
- Online Demo: https://autoqg.net/
- Repository: https://github.com/asahi417/lm-question-generation
- Paper: https://arxiv.org/abs/2210.03992
Usage
- With
lmqg
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="zh", model="lmqg/mt5-small-zhquad-qg-ae")
# model prediction
question_answer_pairs = model.generate_qa("南安普敦的警察服务由汉普郡警察提供。南安普敦行动的主要基地是一座新的八层专用建筑,造价3000万英镑。该建筑位于南路,2011年启用,靠近南安普敦中央火车站。此前,南安普顿市中心的行动位于市民中心西翼,但由于设施老化,加上计划在旧警察局和地方法院建造一座新博物馆,因此必须搬迁。在Portswood、Banister Park、Hille和Shirley还有其他警察局,在南安普顿中央火车站还有一个英国交通警察局。")
- With
transformers
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/mt5-small-zhquad-qg-ae")
# answer extraction
answer = pipe("generate question: 南安普敦的警察服务由汉普郡警察提供。南安普敦行动的主要基地是一座新的八层专用建筑,造价3000万英镑。该建筑位于南路,2011年启用,靠近<hl> 南安普敦中央 <hl>火车站。此前,南安普顿市中心的行动位于市民中心西翼,但由于设施老化,加上计划在旧警察局和地方法院建造一座新博物馆,因此必须搬迁。在Portswood、Banister Park、Hille和Shirley还有其他警察局,在南安普顿中央火车站还有一个英国交通警察局。")
# question generation
question = pipe("extract answers: 南安普敦的警察服务由汉普郡警察提供。 南安普敦行动的主要基地是一座新的八层专用建筑,造价3000万英镑。 <hl> 该建筑位于南路,2011年启用,靠近 南安普敦中央 火车站。 <hl> 此前,南安普顿市中心的行动位于市民中心西翼,但由于设施老化,加上计划在旧警察局和地方法院建造一座新博物馆,因此必须搬迁。 在Portswood、Banister Park、Hille和Shirley还有其他警察局,在南安普顿中央火车站还有一个英国交通警察局。")
Evaluation
- Metric (Question Generation): raw metric file
Score | Type | Dataset | |
---|---|---|---|
BERTScore | 76.64 | default | lmqg/qg_zhquad |
Bleu_1 | 35.24 | default | lmqg/qg_zhquad |
Bleu_2 | 24.56 | default | lmqg/qg_zhquad |
Bleu_3 | 18.21 | default | lmqg/qg_zhquad |
Bleu_4 | 13.98 | default | lmqg/qg_zhquad |
METEOR | 22.88 | default | lmqg/qg_zhquad |
MoverScore | 57.03 | default | lmqg/qg_zhquad |
ROUGE_L | 33.17 | default | lmqg/qg_zhquad |
- Metric (Question & Answer Generation): raw metric file
Score | Type | Dataset | |
---|---|---|---|
QAAlignedF1Score (BERTScore) | 78.55 | default | lmqg/qg_zhquad |
QAAlignedF1Score (MoverScore) | 53.47 | default | lmqg/qg_zhquad |
QAAlignedPrecision (BERTScore) | 75.41 | default | lmqg/qg_zhquad |
QAAlignedPrecision (MoverScore) | 51.5 | default | lmqg/qg_zhquad |
QAAlignedRecall (BERTScore) | 82.09 | default | lmqg/qg_zhquad |
QAAlignedRecall (MoverScore) | 55.73 | default | lmqg/qg_zhquad |
- Metric (Answer Extraction): raw metric file
Score | Type | Dataset | |
---|---|---|---|
AnswerExactMatch | 93.5 | default | lmqg/qg_zhquad |
AnswerF1Score | 93.58 | default | lmqg/qg_zhquad |
BERTScore | 99.69 | default | lmqg/qg_zhquad |
Bleu_1 | 92 | default | lmqg/qg_zhquad |
Bleu_2 | 88.87 | default | lmqg/qg_zhquad |
Bleu_3 | 85.52 | default | lmqg/qg_zhquad |
Bleu_4 | 81.9 | default | lmqg/qg_zhquad |
METEOR | 69.99 | default | lmqg/qg_zhquad |
MoverScore | 98.34 | default | lmqg/qg_zhquad |
ROUGE_L | 95.05 | default | lmqg/qg_zhquad |
Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_zhquad
- dataset_name: default
- input_types: ['paragraph_answer', 'paragraph_sentence']
- output_types: ['question', 'answer']
- prefix_types: ['qg', 'ae']
- model: google/mt5-small
- max_length: 512
- max_length_output: 32
- epoch: 13
- batch: 16
- lr: 0.0005
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 4
- label_smoothing: 0.15
The full configuration can be found at fine-tuning config file.
Citation
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}