File size: 2,432 Bytes
0db484f 50ed4c9 0db484f 50ed4c9 0db484f 50ed4c9 0db484f 50ed4c9 0db484f 50ed4c9 0db484f 50ed4c9 0db484f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
---
library_name: transformers
language:
- en
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- lord-reso/inbrowser-proctor-dataset
metrics:
- wer
model-index:
- name: Whisper-Small-Inbrowser-Proctor
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Inbrowser Procotor Dataset
type: lord-reso/inbrowser-proctor-dataset
args: 'config: en, split: test'
metrics:
- name: Wer
type: wer
value: 17.075501752150366
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper-Small-Inbrowser-Proctor
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Inbrowser Procotor Dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3099
- Wer: 17.0755
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 25
- training_steps: 250
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.3461 | 0.4545 | 25 | 0.4545 | 26.0433 |
| 0.1902 | 0.9091 | 50 | 0.3309 | 17.4419 |
| 0.1184 | 1.3636 | 75 | 0.3120 | 14.6543 |
| 0.0944 | 1.8182 | 100 | 0.3066 | 16.7251 |
| 0.0632 | 2.2727 | 125 | 0.3046 | 14.8455 |
| 0.0688 | 2.7273 | 150 | 0.3060 | 14.8933 |
| 0.0479 | 3.1818 | 175 | 0.3063 | 17.1074 |
| 0.0515 | 3.6364 | 200 | 0.3081 | 15.4986 |
| 0.0296 | 4.0909 | 225 | 0.3096 | 17.2507 |
| 0.0348 | 4.5455 | 250 | 0.3099 | 17.0755 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.0
- Tokenizers 0.19.1
|