louislu9911's picture
Model save
800cd1a verified
|
raw
history blame
2.81 kB
metadata
license: apache-2.0
base_model: facebook/convnextv2-base-1k-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: BaseModel-leaf-disease-convnextv2-base-1k-224-0_1_2_3_4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8738317757009346

BaseModel-leaf-disease-convnextv2-base-1k-224-0_1_2_3_4

This model is a fine-tuned version of facebook/convnextv2-base-1k-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3737
  • Accuracy: 0.8738

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 300
  • eval_batch_size: 300
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 1200
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 16

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.9249 0.98 16 0.6211 0.7752
0.5028 1.97 32 0.4815 0.8411
0.4421 2.95 48 0.4503 0.8533
0.4009 4.0 65 0.4187 0.8607
0.3821 4.98 81 0.4080 0.8626
0.3672 5.97 97 0.3952 0.8626
0.3544 6.95 113 0.3927 0.8701
0.3287 8.0 130 0.3848 0.8734
0.327 8.98 146 0.3877 0.8696
0.3239 9.97 162 0.3783 0.8701
0.3113 10.95 178 0.3746 0.8724
0.3146 12.0 195 0.3736 0.8734
0.3031 12.98 211 0.3747 0.8692
0.3075 13.97 227 0.3752 0.8738
0.3071 14.95 243 0.3759 0.8762
0.3028 15.75 256 0.3737 0.8738

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.1
  • Datasets 2.18.0
  • Tokenizers 0.15.1