louislu9911's picture
Model save
81b6709 verified
metadata
license: apache-2.0
base_model: facebook/convnextv2-base-22k-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: Expert2-leaf-disease-convnextv2-base-22k-224-1_2_3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9498025944726453

Expert2-leaf-disease-convnextv2-base-22k-224-1_2_3

This model is a fine-tuned version of facebook/convnextv2-base-22k-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1599
  • Accuracy: 0.9498

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 300
  • eval_batch_size: 300
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 1200
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 16

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.0623 0.96 13 0.6227 0.7456
0.5754 2.0 27 0.2772 0.8996
0.233 2.96 40 0.2167 0.9255
0.1972 4.0 54 0.1777 0.9425
0.1763 4.96 67 0.1742 0.9425
0.1631 6.0 81 0.1650 0.9459
0.1532 6.96 94 0.1708 0.9391
0.1384 8.0 108 0.1627 0.9442
0.1415 8.96 121 0.1662 0.9447
0.133 10.0 135 0.1620 0.9470
0.1362 10.96 148 0.1715 0.9442
0.1248 12.0 162 0.1628 0.9447
0.1217 12.96 175 0.1607 0.9475
0.1264 14.0 189 0.1587 0.9475
0.1178 14.96 202 0.1595 0.9498
0.1178 15.41 208 0.1599 0.9498

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.1
  • Datasets 2.18.0
  • Tokenizers 0.15.1