louislu9911's picture
Model save
f4a1c25 verified
|
raw
history blame
2.79 kB
metadata
license: apache-2.0
base_model: facebook/convnextv2-base-1k-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: switch_gate-leaf-disease-convnextv2-base-1k-224
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: None
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9355140186915888

switch_gate-leaf-disease-convnextv2-base-1k-224

This model is a fine-tuned version of facebook/convnextv2-base-1k-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1746
  • Accuracy: 0.9355

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 300
  • eval_batch_size: 300
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 1200
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 16

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6169 0.98 16 0.4210 0.8285
0.3115 1.97 32 0.2653 0.8949
0.2375 2.95 48 0.2198 0.9117
0.1999 4.0 65 0.2004 0.9234
0.1916 4.98 81 0.1841 0.9290
0.1771 5.97 97 0.1897 0.9238
0.168 6.95 113 0.1799 0.9308
0.1592 8.0 130 0.1782 0.9332
0.1542 8.98 146 0.1728 0.9322
0.1521 9.97 162 0.1808 0.9346
0.1501 10.95 178 0.1728 0.9388
0.1426 12.0 195 0.1756 0.9346
0.1389 12.98 211 0.1759 0.9369
0.1391 13.97 227 0.1747 0.9364
0.136 14.95 243 0.1744 0.9364
0.1327 15.75 256 0.1746 0.9355

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.1
  • Datasets 2.18.0
  • Tokenizers 0.15.1