Edit model card

Built with Axolotl

See axolotl config

axolotl version: 0.4.0

base_model: JackFram/llama-68m
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: /data/data/final_set_cleaned/train/
    type: sharegpt
    conversation: chatml
  - path: /data/data/map_coig_cqia.jsonl
    type: sharegpt
    conversation: chatml
  - path: /data/data/ruozhiba.jsonl
    type: sharegpt
    conversation: chatml
dataset_prepared_path: last_run_prepared
val_set_size: 0
output_dir: ./out

sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true

wandb_project:
wandb_entity:
wandb_watch:
wandb_name: 
wandb_log_model:

gradient_accumulation_steps: 8
micro_batch_size: 4
num_epochs: 2
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 2e-5

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 100
evals_per_epoch: 0
eval_table_size:
saves_per_epoch: 4
debug:
deepspeed: deepspeed/zero2.json
weight_decay: 0.0
fsdp:
fsdp_config:
default_system_message: "You are a helpful assistant."
special_tokens:
  eos_token: "<|im_end|>"
  pad_token: "<|end_of_text|>"
tokens:
  - "<|im_start|>"
  - "<|im_end|>"

data/llama-68m-20240502-0037

This model is a fine-tuned version of JackFram/llama-68m on the None dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 6
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 192
  • total_eval_batch_size: 24
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 2

Training results

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.15.0
  • Tokenizers 0.19.1
Downloads last month
47
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for lu-vae/llama-68m-fft

Base model

JackFram/llama-68m
Finetuned
(14)
this model