Edit model card

SetFit with sentence-transformers/all-mpnet-base-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/all-mpnet-base-v2 as the Sentence Transformer embedding model. A MultiOutputClassifier instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

  • Model Type: SetFit
  • Sentence Transformer body: sentence-transformers/all-mpnet-base-v2
  • Classification head: a MultiOutputClassifier instance
  • Maximum Sequence Length: 384 tokens
  • Number of Classes: 3 classes

Model Sources

Evaluation

Metrics

Label Accuracy Precision Recall F1
all 0.5 0.8 0.8889 0.8421

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("Well done on orchestrating such a seamless event!")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 6 10.75 16

Training Hyperparameters

  • batch_size: (32, 2)
  • num_epochs: (10, 10)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: True

Training Results

Epoch Step Training Loss Validation Loss
0.0769 1 0.3115 -
1.0 13 - 0.1928
2.0 26 - 0.1831
3.0 39 - 0.1724
3.8462 50 0.08 -
4.0 52 - 0.1614
5.0 65 - 0.1695
6.0 78 - 0.1837
7.0 91 - 0.1904
7.6923 100 0.0364 -
8.0 104 - 0.1997
9.0 117 - 0.1994
10.0 130 - 0.1967
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.12.1
  • SetFit: 1.0.3
  • Sentence Transformers: 2.7.0
  • Transformers: 4.37.2
  • PyTorch: 2.2.0
  • Datasets: 2.19.1
  • Tokenizers: 0.15.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
3
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for lucienbaumgartner/PAG-annotation

Finetuned
(157)
this model

Evaluation results