|
--- |
|
language: |
|
- ug |
|
license: apache-2.0 |
|
tags: |
|
- automatic-speech-recognition |
|
- mozilla-foundation/common_voice_7_0 |
|
- generated_from_trainer |
|
datasets: |
|
- common_voice |
|
model-index: |
|
- name: uyghur |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# uyghur |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - UG dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2266 |
|
- Wer: 0.3655 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 7.5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 2000 |
|
- num_epochs: 50.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| 3.6863 | 2.73 | 500 | 3.5362 | 1.0 | |
|
| 3.1409 | 5.46 | 1000 | 3.1328 | 1.0 | |
|
| 1.8979 | 8.2 | 1500 | 0.9715 | 0.8864 | |
|
| 1.4859 | 10.93 | 2000 | 0.5234 | 0.7063 | |
|
| 1.3388 | 13.66 | 2500 | 0.4094 | 0.6203 | |
|
| 1.2531 | 16.39 | 3000 | 0.3596 | 0.5185 | |
|
| 1.1992 | 19.13 | 3500 | 0.3221 | 0.4854 | |
|
| 1.1589 | 21.86 | 4000 | 0.3040 | 0.4610 | |
|
| 1.1345 | 24.59 | 4500 | 0.2907 | 0.4450 | |
|
| 1.086 | 27.32 | 5000 | 0.2744 | 0.4299 | |
|
| 1.0697 | 30.05 | 5500 | 0.2617 | 0.4148 | |
|
| 1.0518 | 32.79 | 6000 | 0.2563 | 0.4033 | |
|
| 1.0101 | 35.52 | 6500 | 0.2480 | 0.3934 | |
|
| 1.0013 | 38.25 | 7000 | 0.2412 | 0.3855 | |
|
| 0.9845 | 40.98 | 7500 | 0.2397 | 0.3771 | |
|
| 0.9739 | 43.72 | 8000 | 0.2303 | 0.3726 | |
|
| 0.9636 | 46.45 | 8500 | 0.2285 | 0.3687 | |
|
| 0.9466 | 49.18 | 9000 | 0.2261 | 0.3648 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.16.0.dev0 |
|
- Pytorch 1.10.1+cu102 |
|
- Datasets 1.18.2.dev0 |
|
- Tokenizers 0.11.0 |
|
|