test_named_entity_recognition
This model is a fine-tuned version of distilbert/distilbert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2905
- Precision: 0.4308
- Recall: 0.4271
- F1: 0.4289
- Accuracy: 0.9100
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 56 | 0.3548 | 0.2857 | 0.0206 | 0.0384 | 0.8774 |
No log | 2.0 | 112 | 0.2996 | 0.4243 | 0.3894 | 0.4061 | 0.9061 |
No log | 3.0 | 168 | 0.2905 | 0.4308 | 0.4271 | 0.4289 | 0.9100 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 0
Model tree for luckylzn/test_named_entity_recognition
Base model
distilbert/distilbert-base-cased