metadata
license: apache-2.0
base_model: facebook/convnextv2-base-22k-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: convnextv2-base-22k-224-finetuned-eurosat
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8418079096045198
convnextv2-base-22k-224-finetuned-eurosat
This model is a fine-tuned version of facebook/convnextv2-base-22k-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.4225
- Accuracy: 0.8418
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.5909 | 1.0 | 198 | 0.5287 | 0.7966 |
0.2224 | 2.0 | 396 | 0.4225 | 0.8418 |
0.1975 | 3.0 | 594 | 0.4207 | 0.8418 |
Framework versions
- Transformers 4.37.2
- Pytorch 2.2.0+cu118
- Datasets 2.17.0
- Tokenizers 0.15.2