Edit model card

Minerva-MoE-3x3B

Minerva-MoE-3x3B is a Mixture of Experts (MoE) made with the following models using LazyMergekit:

Evaluation

arc_it acc_norm: 31.91 hellaswag_it acc_norm: 52.20 mmmlu_it: 25.72

🧩 Configuration

base_model: sapienzanlp/Minerva-3B-base-v1.0
experts:
  - source_model: DeepMount00/Minerva-3B-base-RAG
    positive_prompts:
    - "rispondi a domande"
    - "cosa è"
    - "chi è"
    - "dove è"
    - "come si"
    - "spiegami"
    - "definisci"
  - source_model: FairMind/Minerva-3B-Instruct-v1.0
    positive_prompts:
    - "istruzione"
    - "input"
    - "risposta"
    - "scrivi"
    - "sequenza"
    - "istruzioni"
dtype: bfloat16

💻 Usage

!pip install -qU transformers bitsandbytes accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "ludocomito/Minerva-MoE-3x3B"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)

messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
3,154
Safetensors
Model size
5.1B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ludocomito/Minerva-MoE-2x3B

Collection including ludocomito/Minerva-MoE-2x3B