metadata
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: openai/whisper-large-v2
results: []
openai/whisper-large-v2
This model is a fine-tuned version of openai/whisper-large-v2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8022
- Wer: 20.0210
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- training_steps: 500
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0029 | 8.33 | 100 | 0.6650 | 19.2872 |
0.0005 | 16.67 | 200 | 0.7456 | 18.4486 |
0.0003 | 25.0 | 300 | 0.7798 | 19.4969 |
0.0002 | 33.33 | 400 | 0.7964 | 19.7065 |
0.0002 | 41.67 | 500 | 0.8022 | 20.0210 |
Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.1
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2