lv12's picture
full set E-I triplets
375ea9e verified
|
raw
history blame
52.8 kB
---
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dataset_size:100K<n<1M
- loss:CachedMultipleNegativesRankingLoss
base_model: nomic-ai/nomic-embed-text-v1.5
metrics:
- cosine_accuracy
- dot_accuracy
- manhattan_accuracy
- euclidean_accuracy
- max_accuracy
widget:
- source_sentence: 'search_query: adorime'
sentences:
- 'search_query: green air scents llc'
- 'search_query: dpms sbr accessories'
- 'search_query: sweaters cowl neck men'
- source_sentence: 'search_query: serving'
sentences:
- 'search_query: ceramic cups without handles'
- 'search_query: 100 mm cigarette case'
- 'search_query: toddler girl leopard midi'
- source_sentence: 'search_query: haierc'
sentences:
- 'search_query: homder'
- 'search_query: 3d milling metal cnc'
- 'search_query: sandals for women'
- source_sentence: 'search_query: poppies'
sentences:
- 'search_query: fake plants without pot'
- 'search_query: tonsil stone remover'
- 'search_query: vestido corto sexy de mujer'
- source_sentence: 'search_query: dab rig'
sentences:
- 'search_query: volcano weed vaporizer'
- 'search_query: 22 gold chain for men'
- 'search_query: apple watch screen protector'
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on nomic-ai/nomic-embed-text-v1.5
results:
- task:
type: triplet
name: Triplet
dataset:
name: triplet esci
type: triplet-esci
metrics:
- type: cosine_accuracy
value: 0.7405
name: Cosine Accuracy
- type: dot_accuracy
value: 0.269
name: Dot Accuracy
- type: manhattan_accuracy
value: 0.7432
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 0.7457
name: Euclidean Accuracy
- type: max_accuracy
value: 0.7457
name: Max Accuracy
---
# SentenceTransformer based on nomic-ai/nomic-embed-text-v1.5
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nomic-ai/nomic-embed-text-v1.5](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [nomic-ai/nomic-embed-text-v1.5](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5) <!-- at revision 91d2d6bfdddf0b0da840f901b533e99bae30d757 -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NomicBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'search_query: dab rig',
'search_query: volcano weed vaporizer',
'search_query: 22 gold chain for men',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Triplet
* Dataset: `triplet-esci`
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| **cosine_accuracy** | **0.7405** |
| dot_accuracy | 0.269 |
| manhattan_accuracy | 0.7432 |
| euclidean_accuracy | 0.7457 |
| max_accuracy | 0.7457 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 167,039 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 11.1 tokens</li><li>max: 38 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 43.23 tokens</li><li>max: 124 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 43.16 tokens</li><li>max: 97 tokens</li></ul> |
* Samples:
| anchor | positive | negative |
|:--------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>search_query: foos ball coffee table</code> | <code>search_document: KICK Vanquish 55" in Foosball Table, KICK, Blue/Gray</code> | <code>search_document: KICK Legend 55" Foosball Table (Black), KICK, Black</code> |
| <code>search_query: bathroom rugs white washable</code> | <code>search_document: Luxury Bath Mat Floor Towel Set - Absorbent Cotton Hotel Spa Shower/Bathtub Mats [Not a Bathroom Rug] 22"x34" | White | 2 Pack, White Classic, White</code> | <code>search_document: Utopia Towels Cotton Banded Bath Mats, White [Not a Bathroom Rug] 21 x 34 Inches, 100% Ring Spun Cotton - Highly Absorbent and Machine Washable Shower Bathroom Floor Mat (Pack of 2), Utopia Towels, White</code> |
| <code>search_query: kids gloves</code> | <code>search_document: EvridWear Boys Girls Magic Stretch Gripper Gloves 3 Pair Pack Assortment, Kids One Size Winter Warm Gloves Children (8-14Years, 3 Pairs Camo), Evridwear, 3 Pairs Camo</code> | <code>search_document: Body Glove Little Boys 2-Piece UPF 50+ Rash Guard Swimsuit Set (2 Piece), All Black, Size 5, Body Glove, All Black</code> |
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 10,000 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 11.44 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 42.26 tokens</li><li>max: 92 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 42.28 tokens</li><li>max: 105 tokens</li></ul> |
* Samples:
| anchor | positive | negative |
|:--------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>search_query: defender series iphone 8</code> | <code>search_document: Hand-e Muscle Series Belt Clip Case for Apple iPhone 7 / iPhone 8 / iPhone SE “2020” (4.7”) 2-in-1 Protective Defender w Screen Protector & Holster & Kickstand/Shock & Drop Proof – Camouflage/Orange, Hand-e, Camouflage / Orange</code> | <code>search_document: OtterBox Defender Series Rugged Case for iPhone 8 PLUS & iPhone 7 PLUS - Case Only - Non-Retail Packaging - Dark Lake - With Microbial Defense, OtterBox, Dark Lake</code> |
| <code>search_query: joy mangano</code> | <code>search_document: Joy by Joy Mangano 11-Piece Complete Luxury Towel Set, Ivory, Joy Mangano, Ivory</code> | <code>search_document: BAGSMART Jewelry Organizer Case Travel Jewelry Storage Bag for Necklace, Earrings, Rings, Bracelet, Soft Pink, BAGSMART, Soft Pink</code> |
| <code>search_query: cashel fly masks for horses without ears</code> | <code>search_document: Cashel Crusader Designer Horse Fly Mask, Leopard, Weanling, Cashel, Leopard</code> | <code>search_document: Cashel Crusader Designer Horse Fly Mask with Ears, Teal Tribal, Weanling, Cashel, Teal Tribal</code> |
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 4
- `per_device_eval_batch_size`: 4
- `gradient_accumulation_steps`: 4
- `learning_rate`: 1e-06
- `num_train_epochs`: 5
- `lr_scheduler_type`: cosine_with_restarts
- `warmup_ratio`: 0.1
- `dataloader_drop_last`: True
- `dataloader_num_workers`: 4
- `dataloader_prefetch_factor`: 2
- `load_best_model_at_end`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 4
- `per_device_eval_batch_size`: 4
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 4
- `eval_accumulation_steps`: None
- `learning_rate`: 1e-06
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: cosine_with_restarts
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: True
- `dataloader_num_workers`: 4
- `dataloader_prefetch_factor`: 2
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss | loss | triplet-esci_cosine_accuracy |
|:------:|:-----:|:-------------:|:------:|:----------------------------:|
| 0.0096 | 100 | 0.6669 | - | - |
| 0.0192 | 200 | 0.6633 | - | - |
| 0.0287 | 300 | 0.6575 | - | - |
| 0.0383 | 400 | 0.6638 | - | - |
| 0.0479 | 500 | 0.6191 | - | - |
| 0.0575 | 600 | 0.6464 | - | - |
| 0.0671 | 700 | 0.6291 | - | - |
| 0.0766 | 800 | 0.5973 | - | - |
| 0.0862 | 900 | 0.605 | - | - |
| 0.0958 | 1000 | 0.6278 | 0.6525 | 0.7269 |
| 0.1054 | 1100 | 0.6041 | - | - |
| 0.1149 | 1200 | 0.6077 | - | - |
| 0.1245 | 1300 | 0.589 | - | - |
| 0.1341 | 1400 | 0.5811 | - | - |
| 0.1437 | 1500 | 0.5512 | - | - |
| 0.1533 | 1600 | 0.5907 | - | - |
| 0.1628 | 1700 | 0.5718 | - | - |
| 0.1724 | 1800 | 0.5446 | - | - |
| 0.1820 | 1900 | 0.546 | - | - |
| 0.1916 | 2000 | 0.5141 | 0.6105 | 0.7386 |
| 0.2012 | 2100 | 0.5359 | - | - |
| 0.2107 | 2200 | 0.5093 | - | - |
| 0.2203 | 2300 | 0.5384 | - | - |
| 0.2299 | 2400 | 0.5582 | - | - |
| 0.2395 | 2500 | 0.5038 | - | - |
| 0.2490 | 2600 | 0.5031 | - | - |
| 0.2586 | 2700 | 0.5393 | - | - |
| 0.2682 | 2800 | 0.4979 | - | - |
| 0.2778 | 2900 | 0.5221 | - | - |
| 0.2874 | 3000 | 0.4956 | 0.5852 | 0.7495 |
| 0.2969 | 3100 | 0.506 | - | - |
| 0.3065 | 3200 | 0.4962 | - | - |
| 0.3161 | 3300 | 0.4713 | - | - |
| 0.3257 | 3400 | 0.5016 | - | - |
| 0.3353 | 3500 | 0.4749 | - | - |
| 0.3448 | 3600 | 0.4732 | - | - |
| 0.3544 | 3700 | 0.4789 | - | - |
| 0.3640 | 3800 | 0.4825 | - | - |
| 0.3736 | 3900 | 0.4803 | - | - |
| 0.3832 | 4000 | 0.4471 | 0.5743 | 0.7546 |
| 0.3927 | 4100 | 0.4593 | - | - |
| 0.4023 | 4200 | 0.4481 | - | - |
| 0.4119 | 4300 | 0.4603 | - | - |
| 0.4215 | 4400 | 0.4569 | - | - |
| 0.4310 | 4500 | 0.4807 | - | - |
| 0.4406 | 4600 | 0.4368 | - | - |
| 0.4502 | 4700 | 0.4532 | - | - |
| 0.4598 | 4800 | 0.4432 | - | - |
| 0.4694 | 4900 | 0.4802 | - | - |
| 0.4789 | 5000 | 0.4643 | 0.5663 | 0.7593 |
| 0.4885 | 5100 | 0.4154 | - | - |
| 0.4981 | 5200 | 0.4441 | - | - |
| 0.5077 | 5300 | 0.4156 | - | - |
| 0.5173 | 5400 | 0.4273 | - | - |
| 0.5268 | 5500 | 0.3988 | - | - |
| 0.5364 | 5600 | 0.3942 | - | - |
| 0.5460 | 5700 | 0.4186 | - | - |
| 0.5556 | 5800 | 0.423 | - | - |
| 0.5651 | 5900 | 0.434 | - | - |
| 0.5747 | 6000 | 0.4136 | 0.5704 | 0.7616 |
| 0.5843 | 6100 | 0.3968 | - | - |
| 0.5939 | 6200 | 0.4045 | - | - |
| 0.6035 | 6300 | 0.4122 | - | - |
| 0.6130 | 6400 | 0.3618 | - | - |
| 0.6226 | 6500 | 0.341 | - | - |
| 0.6322 | 6600 | 0.3689 | - | - |
| 0.6418 | 6700 | 0.3621 | - | - |
| 0.6514 | 6800 | 0.3774 | - | - |
| 0.6609 | 6900 | 0.3519 | - | - |
| 0.6705 | 7000 | 0.3974 | 0.5729 | 0.7644 |
| 0.6801 | 7100 | 0.3443 | - | - |
| 0.6897 | 7200 | 0.3665 | - | - |
| 0.6993 | 7300 | 0.3683 | - | - |
| 0.7088 | 7400 | 0.3593 | - | - |
| 0.7184 | 7500 | 0.3419 | - | - |
| 0.7280 | 7600 | 0.3587 | - | - |
| 0.7376 | 7700 | 0.3463 | - | - |
| 0.7471 | 7800 | 0.3417 | - | - |
| 0.7567 | 7900 | 0.32 | - | - |
| 0.7663 | 8000 | 0.32 | 0.5735 | 0.7677 |
| 0.7759 | 8100 | 0.3296 | - | - |
| 0.7855 | 8200 | 0.3492 | - | - |
| 0.7950 | 8300 | 0.3022 | - | - |
| 0.8046 | 8400 | 0.3159 | - | - |
| 0.8142 | 8500 | 0.3172 | - | - |
| 0.8238 | 8600 | 0.3157 | - | - |
| 0.8334 | 8700 | 0.3271 | - | - |
| 0.8429 | 8800 | 0.337 | - | - |
| 0.8525 | 8900 | 0.322 | - | - |
| 0.8621 | 9000 | 0.3187 | 0.5803 | 0.7652 |
| 0.8717 | 9100 | 0.307 | - | - |
| 0.8812 | 9200 | 0.2984 | - | - |
| 0.8908 | 9300 | 0.2727 | - | - |
| 0.9004 | 9400 | 0.304 | - | - |
| 0.9100 | 9500 | 0.321 | - | - |
| 0.9196 | 9600 | 0.304 | - | - |
| 0.9291 | 9700 | 0.3302 | - | - |
| 0.9387 | 9800 | 0.3302 | - | - |
| 0.9483 | 9900 | 0.3134 | - | - |
| 0.9579 | 10000 | 0.2936 | 0.5858 | 0.7671 |
| 0.9675 | 10100 | 0.2953 | - | - |
| 0.9770 | 10200 | 0.3035 | - | - |
| 0.9866 | 10300 | 0.303 | - | - |
| 0.9962 | 10400 | 0.2606 | - | - |
| 1.0058 | 10500 | 0.2615 | - | - |
| 1.0153 | 10600 | 0.2703 | - | - |
| 1.0249 | 10700 | 0.2761 | - | - |
| 1.0345 | 10800 | 0.2559 | - | - |
| 1.0441 | 10900 | 0.2672 | - | - |
| 1.0537 | 11000 | 0.2656 | 0.5933 | 0.7676 |
| 1.0632 | 11100 | 0.2825 | - | - |
| 1.0728 | 11200 | 0.2484 | - | - |
| 1.0824 | 11300 | 0.2472 | - | - |
| 1.0920 | 11400 | 0.2678 | - | - |
| 1.1016 | 11500 | 0.2443 | - | - |
| 1.1111 | 11600 | 0.2685 | - | - |
| 1.1207 | 11700 | 0.2504 | - | - |
| 1.1303 | 11800 | 0.2431 | - | - |
| 1.1399 | 11900 | 0.2248 | - | - |
| 1.1495 | 12000 | 0.2229 | 0.5958 | 0.7688 |
| 1.1590 | 12100 | 0.228 | - | - |
| 1.1686 | 12200 | 0.2304 | - | - |
| 1.1782 | 12300 | 0.2193 | - | - |
| 1.1878 | 12400 | 0.2238 | - | - |
| 1.1973 | 12500 | 0.1957 | - | - |
| 1.2069 | 12600 | 0.2075 | - | - |
| 1.2165 | 12700 | 0.2014 | - | - |
| 1.2261 | 12800 | 0.2222 | - | - |
| 1.2357 | 12900 | 0.2059 | - | - |
| 1.2452 | 13000 | 0.2051 | 0.6077 | 0.7651 |
| 1.2548 | 13100 | 0.2076 | - | - |
| 1.2644 | 13200 | 0.226 | - | - |
| 1.2740 | 13300 | 0.1941 | - | - |
| 1.2836 | 13400 | 0.2053 | - | - |
| 1.2931 | 13500 | 0.2003 | - | - |
| 1.3027 | 13600 | 0.1947 | - | - |
| 1.3123 | 13700 | 0.1914 | - | - |
| 1.3219 | 13800 | 0.1956 | - | - |
| 1.3314 | 13900 | 0.1862 | - | - |
| 1.3410 | 14000 | 0.1873 | 0.6110 | 0.7646 |
| 1.3506 | 14100 | 0.1812 | - | - |
| 1.3602 | 14200 | 0.1828 | - | - |
| 1.3698 | 14300 | 0.1696 | - | - |
| 1.3793 | 14400 | 0.1705 | - | - |
| 1.3889 | 14500 | 0.1746 | - | - |
| 1.3985 | 14600 | 0.1756 | - | - |
| 1.4081 | 14700 | 0.1682 | - | - |
| 1.4177 | 14800 | 0.1769 | - | - |
| 1.4272 | 14900 | 0.1795 | - | - |
| 1.4368 | 15000 | 0.1736 | 0.6278 | 0.7616 |
| 1.4464 | 15100 | 0.1546 | - | - |
| 1.4560 | 15200 | 0.1643 | - | - |
| 1.4656 | 15300 | 0.1903 | - | - |
| 1.4751 | 15400 | 0.1902 | - | - |
| 1.4847 | 15500 | 0.1531 | - | - |
| 1.4943 | 15600 | 0.1711 | - | - |
| 1.5039 | 15700 | 0.1546 | - | - |
| 1.5134 | 15800 | 0.1503 | - | - |
| 1.5230 | 15900 | 0.1429 | - | - |
| 1.5326 | 16000 | 0.147 | 0.6306 | 0.7623 |
| 1.5422 | 16100 | 0.1507 | - | - |
| 1.5518 | 16200 | 0.152 | - | - |
| 1.5613 | 16300 | 0.1602 | - | - |
| 1.5709 | 16400 | 0.1541 | - | - |
| 1.5805 | 16500 | 0.1491 | - | - |
| 1.5901 | 16600 | 0.1378 | - | - |
| 1.5997 | 16700 | 0.1505 | - | - |
| 1.6092 | 16800 | 0.1334 | - | - |
| 1.6188 | 16900 | 0.1288 | - | - |
| 1.6284 | 17000 | 0.1168 | 0.6372 | 0.7629 |
| 1.6380 | 17100 | 0.135 | - | - |
| 1.6475 | 17200 | 0.1239 | - | - |
| 1.6571 | 17300 | 0.1398 | - | - |
| 1.6667 | 17400 | 0.1292 | - | - |
| 1.6763 | 17500 | 0.1414 | - | - |
| 1.6859 | 17600 | 0.116 | - | - |
| 1.6954 | 17700 | 0.1302 | - | - |
| 1.7050 | 17800 | 0.1194 | - | - |
| 1.7146 | 17900 | 0.1394 | - | - |
| 1.7242 | 18000 | 0.1316 | 0.6561 | 0.7592 |
| 1.7338 | 18100 | 0.1246 | - | - |
| 1.7433 | 18200 | 0.1277 | - | - |
| 1.7529 | 18300 | 0.1055 | - | - |
| 1.7625 | 18400 | 0.1211 | - | - |
| 1.7721 | 18500 | 0.1107 | - | - |
| 1.7817 | 18600 | 0.1145 | - | - |
| 1.7912 | 18700 | 0.1162 | - | - |
| 1.8008 | 18800 | 0.1114 | - | - |
| 1.8104 | 18900 | 0.1182 | - | - |
| 1.8200 | 19000 | 0.1152 | 0.6567 | 0.7591 |
| 1.8295 | 19100 | 0.1212 | - | - |
| 1.8391 | 19200 | 0.1253 | - | - |
| 1.8487 | 19300 | 0.115 | - | - |
| 1.8583 | 19400 | 0.1292 | - | - |
| 1.8679 | 19500 | 0.1151 | - | - |
| 1.8774 | 19600 | 0.1005 | - | - |
| 1.8870 | 19700 | 0.1079 | - | - |
| 1.8966 | 19800 | 0.0954 | - | - |
| 1.9062 | 19900 | 0.1045 | - | - |
| 1.9158 | 20000 | 0.1086 | 0.6727 | 0.7554 |
| 1.9253 | 20100 | 0.1174 | - | - |
| 1.9349 | 20200 | 0.1108 | - | - |
| 1.9445 | 20300 | 0.0992 | - | - |
| 1.9541 | 20400 | 0.1168 | - | - |
| 1.9636 | 20500 | 0.1028 | - | - |
| 1.9732 | 20600 | 0.1126 | - | - |
| 1.9828 | 20700 | 0.1113 | - | - |
| 1.9924 | 20800 | 0.1065 | - | - |
| 2.0020 | 20900 | 0.078 | - | - |
| 2.0115 | 21000 | 0.0921 | 0.6727 | 0.7568 |
| 2.0211 | 21100 | 0.0866 | - | - |
| 2.0307 | 21200 | 0.0918 | - | - |
| 2.0403 | 21300 | 0.0893 | - | - |
| 2.0499 | 21400 | 0.0882 | - | - |
| 2.0594 | 21500 | 0.0986 | - | - |
| 2.0690 | 21600 | 0.0923 | - | - |
| 2.0786 | 21700 | 0.0805 | - | - |
| 2.0882 | 21800 | 0.0887 | - | - |
| 2.0978 | 21900 | 0.1 | - | - |
| 2.1073 | 22000 | 0.0957 | 0.6854 | 0.7539 |
| 2.1169 | 22100 | 0.0921 | - | - |
| 2.1265 | 22200 | 0.0892 | - | - |
| 2.1361 | 22300 | 0.0805 | - | - |
| 2.1456 | 22400 | 0.0767 | - | - |
| 2.1552 | 22500 | 0.0715 | - | - |
| 2.1648 | 22600 | 0.083 | - | - |
| 2.1744 | 22700 | 0.0755 | - | - |
| 2.1840 | 22800 | 0.075 | - | - |
| 2.1935 | 22900 | 0.0724 | - | - |
| 2.2031 | 23000 | 0.0822 | 0.6913 | 0.7534 |
| 2.2127 | 23100 | 0.0623 | - | - |
| 2.2223 | 23200 | 0.0765 | - | - |
| 2.2319 | 23300 | 0.0755 | - | - |
| 2.2414 | 23400 | 0.0786 | - | - |
| 2.2510 | 23500 | 0.0651 | - | - |
| 2.2606 | 23600 | 0.081 | - | - |
| 2.2702 | 23700 | 0.0664 | - | - |
| 2.2797 | 23800 | 0.0906 | - | - |
| 2.2893 | 23900 | 0.0714 | - | - |
| 2.2989 | 24000 | 0.0703 | 0.6971 | 0.7536 |
| 2.3085 | 24100 | 0.0672 | - | - |
| 2.3181 | 24200 | 0.0754 | - | - |
| 2.3276 | 24300 | 0.0687 | - | - |
| 2.3372 | 24400 | 0.0668 | - | - |
| 2.3468 | 24500 | 0.0616 | - | - |
| 2.3564 | 24600 | 0.0693 | - | - |
| 2.3660 | 24700 | 0.0587 | - | - |
| 2.3755 | 24800 | 0.0612 | - | - |
| 2.3851 | 24900 | 0.0559 | - | - |
| 2.3947 | 25000 | 0.0676 | 0.7128 | 0.7497 |
| 2.4043 | 25100 | 0.0607 | - | - |
| 2.4139 | 25200 | 0.0727 | - | - |
| 2.4234 | 25300 | 0.0573 | - | - |
| 2.4330 | 25400 | 0.0717 | - | - |
| 2.4426 | 25500 | 0.0493 | - | - |
| 2.4522 | 25600 | 0.0558 | - | - |
| 2.4617 | 25700 | 0.0676 | - | - |
| 2.4713 | 25800 | 0.0757 | - | - |
| 2.4809 | 25900 | 0.0735 | - | - |
| 2.4905 | 26000 | 0.056 | 0.7044 | 0.7513 |
| 2.5001 | 26100 | 0.0687 | - | - |
| 2.5096 | 26200 | 0.0592 | - | - |
| 2.5192 | 26300 | 0.057 | - | - |
| 2.5288 | 26400 | 0.0444 | - | - |
| 2.5384 | 26500 | 0.0547 | - | - |
| 2.5480 | 26600 | 0.0605 | - | - |
| 2.5575 | 26700 | 0.066 | - | - |
| 2.5671 | 26800 | 0.0631 | - | - |
| 2.5767 | 26900 | 0.0634 | - | - |
| 2.5863 | 27000 | 0.0537 | 0.7127 | 0.7512 |
| 2.5958 | 27100 | 0.0535 | - | - |
| 2.6054 | 27200 | 0.0572 | - | - |
| 2.6150 | 27300 | 0.0473 | - | - |
| 2.6246 | 27400 | 0.0418 | - | - |
| 2.6342 | 27500 | 0.0585 | - | - |
| 2.6437 | 27600 | 0.0475 | - | - |
| 2.6533 | 27700 | 0.0549 | - | - |
| 2.6629 | 27800 | 0.0452 | - | - |
| 2.6725 | 27900 | 0.0514 | - | - |
| 2.6821 | 28000 | 0.0449 | 0.7337 | 0.7482 |
| 2.6916 | 28100 | 0.0544 | - | - |
| 2.7012 | 28200 | 0.041 | - | - |
| 2.7108 | 28300 | 0.0599 | - | - |
| 2.7204 | 28400 | 0.057 | - | - |
| 2.7300 | 28500 | 0.0503 | - | - |
| 2.7395 | 28600 | 0.0487 | - | - |
| 2.7491 | 28700 | 0.0503 | - | - |
| 2.7587 | 28800 | 0.0446 | - | - |
| 2.7683 | 28900 | 0.042 | - | - |
| 2.7778 | 29000 | 0.0501 | 0.7422 | 0.7469 |
| 2.7874 | 29100 | 0.0494 | - | - |
| 2.7970 | 29200 | 0.0423 | - | - |
| 2.8066 | 29300 | 0.0508 | - | - |
| 2.8162 | 29400 | 0.0459 | - | - |
| 2.8257 | 29500 | 0.0514 | - | - |
| 2.8353 | 29600 | 0.0484 | - | - |
| 2.8449 | 29700 | 0.0571 | - | - |
| 2.8545 | 29800 | 0.0558 | - | - |
| 2.8641 | 29900 | 0.0466 | - | - |
| 2.8736 | 30000 | 0.0465 | 0.7478 | 0.7447 |
| 2.8832 | 30100 | 0.0463 | - | - |
| 2.8928 | 30200 | 0.0362 | - | - |
| 2.9024 | 30300 | 0.0435 | - | - |
| 2.9119 | 30400 | 0.0419 | - | - |
| 2.9215 | 30500 | 0.046 | - | - |
| 2.9311 | 30600 | 0.0451 | - | - |
| 2.9407 | 30700 | 0.0458 | - | - |
| 2.9503 | 30800 | 0.052 | - | - |
| 2.9598 | 30900 | 0.0454 | - | - |
| 2.9694 | 31000 | 0.0433 | 0.7580 | 0.745 |
| 2.9790 | 31100 | 0.0438 | - | - |
| 2.9886 | 31200 | 0.0537 | - | - |
| 2.9982 | 31300 | 0.033 | - | - |
| 3.0077 | 31400 | 0.0384 | - | - |
| 3.0173 | 31500 | 0.0349 | - | - |
| 3.0269 | 31600 | 0.0365 | - | - |
| 3.0365 | 31700 | 0.0397 | - | - |
| 3.0460 | 31800 | 0.0396 | - | - |
| 3.0556 | 31900 | 0.0358 | - | - |
| 3.0652 | 32000 | 0.0443 | 0.7592 | 0.7454 |
| 3.0748 | 32100 | 0.0323 | - | - |
| 3.0844 | 32200 | 0.0418 | - | - |
| 3.0939 | 32300 | 0.0463 | - | - |
| 3.1035 | 32400 | 0.0397 | - | - |
| 3.1131 | 32500 | 0.0425 | - | - |
| 3.1227 | 32600 | 0.0406 | - | - |
| 3.1323 | 32700 | 0.0454 | - | - |
| 3.1418 | 32800 | 0.0287 | - | - |
| 3.1514 | 32900 | 0.0267 | - | - |
| 3.1610 | 33000 | 0.0341 | 0.7672 | 0.7431 |
| 3.1706 | 33100 | 0.0357 | - | - |
| 3.1802 | 33200 | 0.0322 | - | - |
| 3.1897 | 33300 | 0.0367 | - | - |
| 3.1993 | 33400 | 0.0419 | - | - |
| 3.2089 | 33500 | 0.0349 | - | - |
| 3.2185 | 33600 | 0.0327 | - | - |
| 3.2280 | 33700 | 0.0377 | - | - |
| 3.2376 | 33800 | 0.0353 | - | - |
| 3.2472 | 33900 | 0.0305 | - | - |
| 3.2568 | 34000 | 0.0362 | 0.7668 | 0.7463 |
| 3.2664 | 34100 | 0.0311 | - | - |
| 3.2759 | 34200 | 0.0405 | - | - |
| 3.2855 | 34300 | 0.0401 | - | - |
| 3.2951 | 34400 | 0.0361 | - | - |
| 3.3047 | 34500 | 0.0302 | - | - |
| 3.3143 | 34600 | 0.0379 | - | - |
| 3.3238 | 34700 | 0.03 | - | - |
| 3.3334 | 34800 | 0.039 | - | - |
| 3.3430 | 34900 | 0.0288 | - | - |
| 3.3526 | 35000 | 0.0318 | 0.7782 | 0.7436 |
| 3.3621 | 35100 | 0.0283 | - | - |
| 3.3717 | 35200 | 0.029 | - | - |
| 3.3813 | 35300 | 0.0287 | - | - |
| 3.3909 | 35400 | 0.0343 | - | - |
| 3.4005 | 35500 | 0.0326 | - | - |
| 3.4100 | 35600 | 0.031 | - | - |
| 3.4196 | 35700 | 0.0304 | - | - |
| 3.4292 | 35800 | 0.0314 | - | - |
| 3.4388 | 35900 | 0.0286 | - | - |
| 3.4484 | 36000 | 0.0229 | 0.7978 | 0.7428 |
| 3.4579 | 36100 | 0.0258 | - | - |
| 3.4675 | 36200 | 0.043 | - | - |
| 3.4771 | 36300 | 0.042 | - | - |
| 3.4867 | 36400 | 0.029 | - | - |
| 3.4963 | 36500 | 0.0343 | - | - |
| 3.5058 | 36600 | 0.0317 | - | - |
| 3.5154 | 36700 | 0.0307 | - | - |
| 3.5250 | 36800 | 0.0251 | - | - |
| 3.5346 | 36900 | 0.025 | - | - |
| 3.5441 | 37000 | 0.0309 | 0.8002 | 0.7446 |
| 3.5537 | 37100 | 0.031 | - | - |
| 3.5633 | 37200 | 0.0345 | - | - |
| 3.5729 | 37300 | 0.0332 | - | - |
| 3.5825 | 37400 | 0.0346 | - | - |
| 3.5920 | 37500 | 0.026 | - | - |
| 3.6016 | 37600 | 0.0293 | - | - |
| 3.6112 | 37700 | 0.0268 | - | - |
| 3.6208 | 37800 | 0.0264 | - | - |
| 3.6304 | 37900 | 0.0259 | - | - |
| 3.6399 | 38000 | 0.032 | 0.7896 | 0.7438 |
| 3.6495 | 38100 | 0.0246 | - | - |
| 3.6591 | 38200 | 0.0279 | - | - |
| 3.6687 | 38300 | 0.0274 | - | - |
| 3.6782 | 38400 | 0.0241 | - | - |
| 3.6878 | 38500 | 0.027 | - | - |
| 3.6974 | 38600 | 0.022 | - | - |
| 3.7070 | 38700 | 0.0305 | - | - |
| 3.7166 | 38800 | 0.0368 | - | - |
| 3.7261 | 38900 | 0.0304 | - | - |
| 3.7357 | 39000 | 0.0249 | 0.7978 | 0.7437 |
| 3.7453 | 39100 | 0.0312 | - | - |
| 3.7549 | 39200 | 0.0257 | - | - |
| 3.7645 | 39300 | 0.0273 | - | - |
| 3.7740 | 39400 | 0.0209 | - | - |
| 3.7836 | 39500 | 0.0298 | - | - |
| 3.7932 | 39600 | 0.0282 | - | - |
| 3.8028 | 39700 | 0.028 | - | - |
| 3.8124 | 39800 | 0.0279 | - | - |
| 3.8219 | 39900 | 0.0283 | - | - |
| 3.8315 | 40000 | 0.0239 | 0.7982 | 0.7424 |
| 3.8411 | 40100 | 0.0378 | - | - |
| 3.8507 | 40200 | 0.028 | - | - |
| 3.8602 | 40300 | 0.0321 | - | - |
| 3.8698 | 40400 | 0.0289 | - | - |
| 3.8794 | 40500 | 0.027 | - | - |
| 3.8890 | 40600 | 0.0224 | - | - |
| 3.8986 | 40700 | 0.0236 | - | - |
| 3.9081 | 40800 | 0.0267 | - | - |
| 3.9177 | 40900 | 0.0228 | - | - |
| 3.9273 | 41000 | 0.0322 | 0.8101 | 0.7415 |
| 3.9369 | 41100 | 0.0262 | - | - |
| 3.9465 | 41200 | 0.0276 | - | - |
| 3.9560 | 41300 | 0.0292 | - | - |
| 3.9656 | 41400 | 0.0278 | - | - |
| 3.9752 | 41500 | 0.0262 | - | - |
| 3.9848 | 41600 | 0.0306 | - | - |
| 3.9943 | 41700 | 0.0238 | - | - |
| 4.0039 | 41800 | 0.0165 | - | - |
| 4.0135 | 41900 | 0.0241 | - | - |
| 4.0231 | 42000 | 0.0211 | 0.8092 | 0.742 |
| 4.0327 | 42100 | 0.0257 | - | - |
| 4.0422 | 42200 | 0.0236 | - | - |
| 4.0518 | 42300 | 0.0254 | - | - |
| 4.0614 | 42400 | 0.0248 | - | - |
| 4.0710 | 42500 | 0.026 | - | - |
| 4.0806 | 42600 | 0.0245 | - | - |
| 4.0901 | 42700 | 0.0325 | - | - |
| 4.0997 | 42800 | 0.0209 | - | - |
| 4.1093 | 42900 | 0.033 | - | - |
| 4.1189 | 43000 | 0.0265 | 0.8105 | 0.7412 |
| 4.1285 | 43100 | 0.027 | - | - |
| 4.1380 | 43200 | 0.0208 | - | - |
| 4.1476 | 43300 | 0.0179 | - | - |
| 4.1572 | 43400 | 0.0194 | - | - |
| 4.1668 | 43500 | 0.0217 | - | - |
| 4.1763 | 43600 | 0.0212 | - | - |
| 4.1859 | 43700 | 0.0226 | - | - |
| 4.1955 | 43800 | 0.0252 | - | - |
| 4.2051 | 43900 | 0.0293 | - | - |
| 4.2147 | 44000 | 0.0216 | 0.8029 | 0.7414 |
| 4.2242 | 44100 | 0.029 | - | - |
| 4.2338 | 44200 | 0.0216 | - | - |
| 4.2434 | 44300 | 0.0251 | - | - |
| 4.2530 | 44400 | 0.018 | - | - |
| 4.2626 | 44500 | 0.025 | - | - |
| 4.2721 | 44600 | 0.0225 | - | - |
| 4.2817 | 44700 | 0.0303 | - | - |
| 4.2913 | 44800 | 0.028 | - | - |
| 4.3009 | 44900 | 0.0203 | - | - |
| 4.3104 | 45000 | 0.026 | 0.8081 | 0.7405 |
</details>
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.0
- Transformers: 4.38.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.27.2
- Datasets: 2.19.1
- Tokenizers: 0.15.2
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### CachedMultipleNegativesRankingLoss
```bibtex
@misc{gao2021scaling,
title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
year={2021},
eprint={2101.06983},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->