Edit model card

SentenceTransformer based on nomic-ai/nomic-embed-text-v1.5

This is a sentence-transformers model finetuned from nomic-ai/nomic-embed-text-v1.5 on the triplets and pairs datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: nomic-ai/nomic-embed-text-v1.5
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Training Datasets:
    • triplets
    • pairs

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NomicBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'search_query: dab rig',
    'search_query: aga stove',
    'search_query: jerky slicer machine',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Triplet

Metric Value
cosine_accuracy 0.702
dot_accuracy 0.3047
manhattan_accuracy 0.7038
euclidean_accuracy 0.7034
max_accuracy 0.7038

Semantic Similarity

Metric Value
pearson_cosine 0.4401
spearman_cosine 0.4299
pearson_manhattan 0.4002
spearman_manhattan 0.4007
pearson_euclidean 0.4003
spearman_euclidean 0.4008
pearson_dot 0.4432
spearman_dot 0.4355
pearson_max 0.4432
spearman_max 0.4355

Training Details

Training Datasets

triplets

  • Dataset: triplets
  • Size: 261,250 training samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 7 tokens
    • mean: 11.57 tokens
    • max: 40 tokens
    • min: 17 tokens
    • mean: 43.83 tokens
    • max: 119 tokens
    • min: 15 tokens
    • mean: 43.31 tokens
    • max: 112 tokens
  • Samples:
    anchor positive negative
    search_query: ear warmers women north face search_document: The North Face Women's Oh-Mega Fur Pom Beanie, TNF Black, OS, The North Face, Tnf Black search_document: The North Face Shinsky Beanie, TNF Light Grey Heather, OS, The North Face, Tnf Light Grey Heather
    search_query: natural braided hairstyles without weave for black women search_document: Baseball Cap Wig Long Ombre Braids Cap Wig Hat with Synthetic Small Box Braiding Hair for Women Girls(B-53), Yunkang, B-53 search_document: K'ryssma Dark Brown Synthetic Wigs for women - Natural Looking Long Wavy Right Side Parting NONE Lace Heat Resistant Replacement Wig Full Machine Made 24 inch (#2), K'ryssma, Dark Brown
    search_query: boy siracha shirt search_document: Sriracha Distressed Label Graphic T-Shirt, Sriracha, Red search_document: Pho Sho
  • Loss: CachedMultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

pairs

  • Dataset: pairs
  • Size: 261,250 training samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 3 tokens
    • mean: 6.73 tokens
    • max: 33 tokens
    • min: 10 tokens
    • mean: 40.14 tokens
    • max: 98 tokens
    • min: 0.0
    • mean: 0.77
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    I would choose a medium weight waterproof fabric, hip length jacket or longer, long sleeves, zip front, with a hood and deep pockets with zips ZSHOW Men's Winter Hooded Packable Down Jacket(Blue, XX-Large), ZSHOW, Blue 1.0
    sequin dance costume girls Yeahdor Big Girls' Lyrical Latin Ballet Dance Costumes Dresses Halter Sequins Irregular Tutu Skirted Leotard Dancewear Pink 12-14, Yeahdor, Pink 1.0
    paint easel bulk Artecho Artist Easel Display Easel Stand, 2 Pack Metal Tripod Stand Easel for Painting, Hold Canvas from 21" to 66", Floor and Tabletop Displaying, Painting with Portable Bag, Artecho, Black 1.0
  • Loss: AnglELoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_angle_sim"
    }
    

Evaluation Datasets

triplets

  • Dataset: triplets
  • Size: 10,000 evaluation samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 7 tokens
    • mean: 11.52 tokens
    • max: 33 tokens
    • min: 18 tokens
    • mean: 42.45 tokens
    • max: 113 tokens
    • min: 15 tokens
    • mean: 42.7 tokens
    • max: 116 tokens
  • Samples:
    anchor positive negative
    search_query: non damaging eyelash glue search_document: Professional Eyelash Extension Remover Gel - Quickly And Easily Remove Individual Semi Permanent False Lashes - Works With Even The Strongest Fake Eyelash Glue or Adhesive, BEAU LASHES, Clear search_document: Premade Volume Eyelash Extensions 4D-D-0.10-14 Long Stem Premade Fans Eyelash Extensions C D Curl Volume Lash Extensions Pre made Lash Fans(4D-D-0.10, 14mm), B&Qaugen, 4D-0.10-D
    search_query: christmas tablecloths for rectangle tables 60 x 120 gold search_document: Aquazolax Damask Tablecloth for Rectangle Table 60 x 120 Damask Foliate Pattern Jacquard Heavy Weight Fabric Table Overlay, Gold, Aquazolax, 02 - Gold search_document: Benson Mills Harmony Scroll Woven Damask Fabric Tablecloth (60" X 104" Rectangular, Gold), Benson Mills, Gold
    search_query: #10 standard no tint no window not self seal search_document: #10 Security Tinted Self-Seal Envelopes - No Window - EnveGuard, Size 4-1/8 X 9-1/2 Inches - White - 24 LB - 100 Count (34100), Aimoh, White search_document: Chalktastic Liquid Chalk Markers for Kids - Set of 8 Washable, Dry Erase Pens for School, Menu Board & Car Window Glass - Neon, Erasable Chalkboard Pen Pack - Gifts for Artists, Chalktastic, Classic
  • Loss: CachedMultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

pairs

  • Dataset: pairs
  • Size: 10,000 evaluation samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 3 tokens
    • mean: 6.8 tokens
    • max: 34 tokens
    • min: 9 tokens
    • mean: 39.7 tokens
    • max: 101 tokens
    • min: 0.0
    • mean: 0.73
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    outdoor ceiling fans without light 44" Plaza Industrial Indoor Outdoor Ceiling Fan with Remote Control Oil Rubbed Bronze Damp Rated for Patio Porch - Casa Vieja, Casa Vieja, No Light Kit - Bronze 1.0
    bathroom cabinet Homfa Bathroom Floor Cabinet Free Standing with Single Door Multifunctional Bathroom Storage Organizer Toiletries(Ivory White), Homfa, White 1.0
    fitbit charge 3 TreasureMax Compatible with Fitbit Charge 2 Bands for Women/Men,Silicone Fadeless Pattern Printed Replacement Floral Bands for Fitbit Charge 2 HR Wristbands, TreasureMax, Paw 2 0.2
  • Loss: AnglELoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_angle_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • per_device_train_batch_size: 4
  • per_device_eval_batch_size: 4
  • gradient_accumulation_steps: 4
  • learning_rate: 1e-05
  • num_train_epochs: 5
  • lr_scheduler_type: cosine_with_restarts
  • warmup_ratio: 0.1
  • dataloader_drop_last: True
  • dataloader_num_workers: 4
  • dataloader_prefetch_factor: 2
  • load_best_model_at_end: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • prediction_loss_only: True
  • per_device_train_batch_size: 4
  • per_device_eval_batch_size: 4
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 4
  • eval_accumulation_steps: None
  • learning_rate: 1e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: True
  • dataloader_num_workers: 4
  • dataloader_prefetch_factor: 2
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss pairs loss triplets loss cosine_accuracy spearman_cosine
0.0031 100 0.9224 - - - -
0.0061 200 0.9823 - - - -
0.0092 300 0.906 - - - -
0.0122 400 0.9692 - - - -
0.0153 500 1.0174 - - - -
0.0184 600 0.9488 - - - -
0.0214 700 0.9094 - - - -
0.0245 800 1.086 - - - -
0.0276 900 0.9104 - - - -
0.0306 1000 0.8288 1.3267 0.7466 0.6776 0.3661
0.0337 1100 0.9905 - - - -
0.0367 1200 0.9511 - - - -
0.0398 1300 0.894 - - - -
0.0429 1400 0.7935 - - - -
0.0459 1500 0.9212 - - - -
0.0490 1600 0.846 - - - -
0.0521 1700 0.9323 - - - -
0.0551 1800 0.8216 - - - -
0.0582 1900 0.7616 - - - -
0.0612 2000 0.8028 1.1716 0.6940 0.6942 0.4072
0.0643 2100 0.8196 - - - -
0.0674 2200 0.8022 - - - -
0.0704 2300 0.814 - - - -
0.0735 2400 0.8388 - - - -
0.0766 2500 0.7658 - - - -
0.0796 2600 0.7226 - - - -
0.0827 2700 0.7802 - - - -
0.0857 2800 0.8148 - - - -
0.0888 2900 0.7444 - - - -
0.0919 3000 0.7463 1.0475 0.6718 0.7019 0.4410
0.0949 3100 0.7129 - - - -
0.0980 3200 0.6884 - - - -
0.1011 3300 0.7072 - - - -
0.1041 3400 0.7956 - - - -
0.1072 3500 0.7932 - - - -
0.1102 3600 0.6843 - - - -
0.1133 3700 0.8722 - - - -
0.1164 3800 0.6767 - - - -
0.1194 3900 0.6905 - - - -
0.1225 4000 0.7022 1.0538 0.6663 0.706 0.4501
0.1256 4100 0.6574 - - - -
0.1286 4200 0.8011 - - - -
0.1317 4300 0.6902 - - - -
0.1347 4400 0.836 - - - -
0.1378 4500 0.6457 - - - -
0.1409 4600 0.6786 - - - -
0.1439 4700 0.7356 - - - -
0.1470 4800 0.8078 - - - -
0.1500 4900 0.7157 - - - -
0.1531 5000 0.6629 1.0507 0.6669 0.7108 0.4493
0.1562 5100 0.7387 - - - -
0.1592 5200 0.7108 - - - -
0.1623 5300 0.6361 - - - -
0.1654 5400 0.6931 - - - -
0.1684 5500 0.7409 - - - -
0.1715 5600 0.7645 - - - -
0.1745 5700 0.6577 - - - -
0.1776 5800 0.7284 - - - -
0.1807 5900 0.6774 - - - -
0.1837 6000 0.7187 1.0089 0.6612 0.7112 0.4569
0.1868 6100 0.6003 - - - -
0.1899 6200 0.7028 - - - -
0.1929 6300 0.7195 - - - -
0.1960 6400 0.6823 - - - -
0.1990 6500 0.6665 - - - -
0.2021 6600 0.6206 - - - -
0.2052 6700 0.6442 - - - -
0.2082 6800 0.7191 - - - -
0.2113 6900 0.6074 - - - -
0.2144 7000 0.6311 1.0315 0.6657 0.7109 0.4451
0.2174 7100 0.6444 - - - -
0.2205 7200 0.6475 - - - -
0.2235 7300 0.5911 - - - -
0.2266 7400 0.6709 - - - -
0.2297 7500 0.6306 - - - -
0.2327 7600 0.7122 - - - -
0.2358 7700 0.6461 - - - -
0.2389 7800 0.6899 - - - -
0.2419 7900 0.6413 - - - -
0.2450 8000 0.691 1.0058 0.6705 0.7158 0.4520
0.2480 8100 0.609 - - - -
0.2511 8200 0.6054 - - - -
0.2542 8300 0.61 - - - -
0.2572 8400 0.596 - - - -
0.2603 8500 0.6999 - - - -
0.2634 8600 0.5909 - - - -
0.2664 8700 0.5965 - - - -
0.2695 8800 0.5951 - - - -
0.2725 8900 0.6058 - - - -
0.2756 9000 0.5979 1.0287 0.6904 0.7142 0.4628
0.2787 9100 0.6249 - - - -
0.2817 9200 0.6261 - - - -
0.2848 9300 0.6365 - - - -
0.2878 9400 0.5699 - - - -
0.2909 9500 0.6675 - - - -
0.2940 9600 0.5806 - - - -
0.2970 9700 0.5832 - - - -
0.3001 9800 0.6135 - - - -
0.3032 9900 0.6005 - - - -
0.3062 10000 0.6079 1.0232 0.7137 0.7163 0.4686
0.3093 10100 0.6452 - - - -
0.3123 10200 0.5765 - - - -
0.3154 10300 0.619 - - - -
0.3185 10400 0.5154 - - - -
0.3215 10500 0.6142 - - - -
0.3246 10600 0.574 - - - -
0.3277 10700 0.5569 - - - -
0.3307 10800 0.6233 - - - -
0.3338 10900 0.6183 - - - -
0.3368 11000 0.5953 1.0279 0.7040 0.71 0.4571
0.3399 11100 0.5146 - - - -
0.3430 11200 0.6029 - - - -
0.3460 11300 0.6054 - - - -
0.3491 11400 0.6324 - - - -
0.3522 11500 0.5459 - - - -
0.3552 11600 0.5721 - - - -
0.3583 11700 0.5224 - - - -
0.3613 11800 0.5979 - - - -
0.3644 11900 0.5832 - - - -
0.3675 12000 0.5638 1.0372 0.7184 0.7127 0.4475
0.3705 12100 0.4945 - - - -
0.3736 12200 0.6368 - - - -
0.3767 12300 0.5071 - - - -
0.3797 12400 0.626 - - - -
0.3828 12500 0.5986 - - - -
0.3858 12600 0.539 - - - -
0.3889 12700 0.5167 - - - -
0.3920 12800 0.657 - - - -
0.3950 12900 0.5264 - - - -
0.3981 13000 0.4996 1.0362 0.7276 0.7162 0.4534
0.4012 13100 0.4991 - - - -
0.4042 13200 0.5725 - - - -
0.4073 13300 0.5788 - - - -
0.4103 13400 0.5293 - - - -
0.4134 13500 0.5192 - - - -
0.4165 13600 0.5477 - - - -
0.4195 13700 0.5151 - - - -
0.4226 13800 0.5121 - - - -
0.4256 13900 0.6849 - - - -
0.4287 14000 0.5508 1.0062 0.7397 0.7103 0.4571
0.4318 14100 0.55 - - - -
0.4348 14200 0.5041 - - - -
0.4379 14300 0.5041 - - - -
0.4410 14400 0.5198 - - - -
0.4440 14500 0.5354 - - - -
0.4471 14600 0.5535 - - - -
0.4501 14700 0.5368 - - - -
0.4532 14800 0.5379 - - - -
0.4563 14900 0.47 - - - -
0.4593 15000 0.5567 1.0441 0.7531 0.715 0.4516
0.4624 15100 0.5157 - - - -
0.4655 15200 0.5698 - - - -
0.4685 15300 0.5436 - - - -
0.4716 15400 0.6344 - - - -
0.4746 15500 0.4351 - - - -
0.4777 15600 0.5286 - - - -
0.4808 15700 0.552 - - - -
0.4838 15800 0.508 - - - -
0.4869 15900 0.5111 - - - -
0.4900 16000 0.5411 1.0264 0.7570 0.7106 0.4506
0.4930 16100 0.5363 - - - -
0.4961 16200 0.5259 - - - -
0.4991 16300 0.5722 - - - -
0.5022 16400 0.5059 - - - -
0.5053 16500 0.5194 - - - -
0.5083 16600 0.5099 - - - -
0.5114 16700 0.4857 - - - -
0.5145 16800 0.4585 - - - -
0.5175 16900 0.5366 - - - -
0.5206 17000 0.4825 1.0299 0.7740 0.7048 0.4504
0.5236 17100 0.543 - - - -
0.5267 17200 0.5022 - - - -
0.5298 17300 0.4399 - - - -
0.5328 17400 0.5342 - - - -
0.5359 17500 0.5064 - - - -
0.5390 17600 0.5978 - - - -
0.5420 17700 0.4947 - - - -
0.5451 17800 0.4974 - - - -
0.5481 17900 0.5555 - - - -
0.5512 18000 0.5397 1.0885 0.7564 0.7143 0.4493
0.5543 18100 0.4415 - - - -
0.5573 18200 0.3887 - - - -
0.5604 18300 0.4956 - - - -
0.5634 18400 0.471 - - - -
0.5665 18500 0.4671 - - - -
0.5696 18600 0.4279 - - - -
0.5726 18700 0.5509 - - - -
0.5757 18800 0.5135 - - - -
0.5788 18900 0.595 - - - -
0.5818 19000 0.4531 1.0569 0.7628 0.708 0.4528
0.5849 19100 0.4926 - - - -
0.5879 19200 0.5718 - - - -
0.5910 19300 0.4963 - - - -
0.5941 19400 0.5222 - - - -
0.5971 19500 0.4079 - - - -
0.6002 19600 0.4662 - - - -
0.6033 19700 0.4838 - - - -
0.6063 19800 0.5238 - - - -
0.6094 19900 0.5475 - - - -
0.6124 20000 0.4 1.0716 0.7965 0.709 0.4691
0.6155 20100 0.5323 - - - -
0.6186 20200 0.4544 - - - -
0.6216 20300 0.4556 - - - -
0.6247 20400 0.5716 - - - -
0.6278 20500 0.5538 - - - -
0.6308 20600 0.4546 - - - -
0.6339 20700 0.4146 - - - -
0.6369 20800 0.4811 - - - -
0.6400 20900 0.4577 - - - -
0.6431 21000 0.4901 1.0721 0.7903 0.7084 0.4594
0.6461 21100 0.4999 - - - -
0.6492 21200 0.3999 - - - -
0.6523 21300 0.4587 - - - -
0.6553 21400 0.4737 - - - -
0.6584 21500 0.4913 - - - -
0.6614 21600 0.4612 - - - -
0.6645 21700 0.432 - - - -
0.6676 21800 0.4627 - - - -
0.6706 21900 0.5023 - - - -
0.6737 22000 0.4486 1.0888 0.7913 0.7056 0.4618
0.6768 22100 0.5068 - - - -
0.6798 22200 0.4843 - - - -
0.6829 22300 0.4687 - - - -
0.6859 22400 0.5123 - - - -
0.6890 22500 0.3802 - - - -
0.6921 22600 0.4883 - - - -
0.6951 22700 0.5069 - - - -
0.6982 22800 0.4859 - - - -
0.7012 22900 0.3931 - - - -
0.7043 23000 0.4675 1.1026 0.8213 0.7051 0.4513
0.7074 23100 0.4948 - - - -
0.7104 23200 0.4561 - - - -
0.7135 23300 0.3874 - - - -
0.7166 23400 0.4909 - - - -
0.7196 23500 0.521 - - - -
0.7227 23600 0.4997 - - - -
0.7257 23700 0.4104 - - - -
0.7288 23800 0.4801 - - - -
0.7319 23900 0.5237 - - - -
0.7349 24000 0.3782 1.0715 0.7962 0.7098 0.4583
0.7380 24100 0.493 - - - -
0.7411 24200 0.489 - - - -
0.7441 24300 0.4797 - - - -
0.7472 24400 0.4636 - - - -
0.7502 24500 0.406 - - - -
0.7533 24600 0.3765 - - - -
0.7564 24700 0.4746 - - - -
0.7594 24800 0.447 - - - -
0.7625 24900 0.5286 - - - -
0.7656 25000 0.4814 1.0794 0.7977 0.7134 0.4614
0.7686 25100 0.505 - - - -
0.7717 25200 0.4508 - - - -
0.7747 25300 0.4317 - - - -
0.7778 25400 0.5088 - - - -
0.7809 25500 0.3931 - - - -
0.7839 25600 0.4516 - - - -
0.7870 25700 0.4394 - - - -
0.7901 25800 0.4825 - - - -
0.7931 25900 0.4248 - - - -
0.7962 26000 0.4215 1.0887 0.8159 0.7065 0.4719
0.7992 26100 0.4674 - - - -
0.8023 26200 0.4634 - - - -
0.8054 26300 0.3975 - - - -
0.8084 26400 0.402 - - - -
0.8115 26500 0.4652 - - - -
0.8146 26600 0.487 - - - -
0.8176 26700 0.4677 - - - -
0.8207 26800 0.4662 - - - -
0.8237 26900 0.4658 - - - -
0.8268 27000 0.4922 1.0792 0.8019 0.7126 0.4544
0.8299 27100 0.4551 - - - -
0.8329 27200 0.4052 - - - -
0.8360 27300 0.3713 - - - -
0.8390 27400 0.4247 - - - -
0.8421 27500 0.4167 - - - -
0.8452 27600 0.4035 - - - -
0.8482 27700 0.5203 - - - -
0.8513 27800 0.4768 - - - -
0.8544 27900 0.4085 - - - -
0.8574 28000 0.3793 1.0920 0.7942 0.7146 0.4630
0.8605 28100 0.4188 - - - -
0.8635 28200 0.4492 - - - -
0.8666 28300 0.4534 - - - -
0.8697 28400 0.4188 - - - -
0.8727 28500 0.5298 - - - -
0.8758 28600 0.4907 - - - -
0.8789 28700 0.4415 - - - -
0.8819 28800 0.4436 - - - -
0.8850 28900 0.4105 - - - -
0.8880 29000 0.5498 1.0937 0.8023 0.7127 0.4492
0.8911 29100 0.4478 - - - -
0.8942 29200 0.4467 - - - -
0.8972 29300 0.3691 - - - -
0.9003 29400 0.358 - - - -
0.9034 29500 0.4101 - - - -
0.9064 29600 0.4568 - - - -
0.9095 29700 0.4776 - - - -
0.9125 29800 0.3909 - - - -
0.9156 29900 0.4731 - - - -
0.9187 30000 0.4407 1.1511 0.8187 0.7131 0.4423
0.9217 30100 0.5712 - - - -
0.9248 30200 0.457 - - - -
0.9279 30300 0.4141 - - - -
0.9309 30400 0.4779 - - - -
0.9340 30500 0.418 - - - -
0.9370 30600 0.4377 - - - -
0.9401 30700 0.3997 - - - -
0.9432 30800 0.3443 - - - -
0.9462 30900 0.5006 - - - -
0.9493 31000 0.4728 1.1302 0.8141 0.7137 0.4555
0.9524 31100 0.5103 - - - -
0.9554 31200 0.3898 - - - -
0.9585 31300 0.4132 - - - -
0.9615 31400 0.4567 - - - -
0.9646 31500 0.4226 - - - -
0.9677 31600 0.3669 - - - -
0.9707 31700 0.4707 - - - -
0.9738 31800 0.5012 - - - -
0.9768 31900 0.4114 - - - -
0.9799 32000 0.3666 1.1309 0.8225 0.7102 0.4632
0.9830 32100 0.4514 - - - -
0.9860 32200 0.4329 - - - -
0.9891 32300 0.4559 - - - -
0.9922 32400 0.412 - - - -
0.9952 32500 0.3883 - - - -
0.9983 32600 0.3854 - - - -
1.0013 32700 0.3886 - - - -
1.0044 32800 0.41 - - - -
1.0075 32900 0.4494 - - - -
1.0105 33000 0.4862 1.1124 0.8362 0.7079 0.4494
1.0136 33100 0.3951 - - - -
1.0167 33200 0.4714 - - - -
1.0197 33300 0.4037 - - - -
1.0228 33400 0.4534 - - - -
1.0258 33500 0.5265 - - - -
1.0289 33600 0.4432 - - - -
1.0320 33700 0.3665 - - - -
1.0350 33800 0.4235 - - - -
1.0381 33900 0.3905 - - - -
1.0412 34000 0.3532 1.1693 0.8203 0.7142 0.4420
1.0442 34100 0.3472 - - - -
1.0473 34200 0.4316 - - - -
1.0503 34300 0.3811 - - - -
1.0534 34400 0.4753 - - - -
1.0565 34500 0.3757 - - - -
1.0595 34600 0.417 - - - -
1.0626 34700 0.3727 - - - -
1.0657 34800 0.4127 - - - -
1.0687 34900 0.4487 - - - -
1.0718 35000 0.3786 1.1073 0.8310 0.7159 0.4678
1.0748 35100 0.4043 - - - -
1.0779 35200 0.4226 - - - -
1.0810 35300 0.3585 - - - -
1.0840 35400 0.407 - - - -
1.0871 35500 0.4682 - - - -
1.0902 35600 0.3273 - - - -
1.0932 35700 0.3594 - - - -
1.0963 35800 0.3795 - - - -
1.0993 35900 0.3633 - - - -
1.1024 36000 0.3729 1.1356 0.8248 0.7169 0.4525
1.1055 36100 0.4179 - - - -
1.1085 36200 0.3907 - - - -
1.1116 36300 0.4495 - - - -
1.1146 36400 0.4093 - - - -
1.1177 36500 0.327 - - - -
1.1208 36600 0.2868 - - - -
1.1238 36700 0.2917 - - - -
1.1269 36800 0.3753 - - - -
1.1300 36900 0.3508 - - - -
1.1330 37000 0.4483 1.1865 0.8488 0.7035 0.4559
1.1361 37100 0.4439 - - - -
1.1391 37200 0.3225 - - - -
1.1422 37300 0.401 - - - -
1.1453 37400 0.3858 - - - -
1.1483 37500 0.4877 - - - -
1.1514 37600 0.3456 - - - -
1.1545 37700 0.3827 - - - -
1.1575 37800 0.4412 - - - -
1.1606 37900 0.3679 - - - -
1.1636 38000 0.3465 1.1654 0.8383 0.7095 0.4498
1.1667 38100 0.3433 - - - -
1.1698 38200 0.3745 - - - -
1.1728 38300 0.3902 - - - -
1.1759 38400 0.2779 - - - -
1.1790 38500 0.3916 - - - -
1.1820 38600 0.346 - - - -
1.1851 38700 0.3742 - - - -
1.1881 38800 0.3424 - - - -
1.1912 38900 0.4042 - - - -
1.1943 39000 0.2993 1.2051 0.8313 0.7106 0.4571
1.1973 39100 0.3167 - - - -
1.2004 39200 0.3291 - - - -
1.2035 39300 0.245 - - - -
1.2065 39400 0.3289 - - - -
1.2096 39500 0.3969 - - - -
1.2126 39600 0.2511 - - - -
1.2157 39700 0.2972 - - - -
1.2188 39800 0.3434 - - - -
1.2218 39900 0.324 - - - -
1.2249 40000 0.2837 1.2372 0.8453 0.7121 0.4562
1.2280 40100 0.2727 - - - -
1.2310 40200 0.3327 - - - -
1.2341 40300 0.3468 - - - -
1.2371 40400 0.3029 - - - -
1.2402 40500 0.3583 - - - -
1.2433 40600 0.3664 - - - -
1.2463 40700 0.2661 - - - -
1.2494 40800 0.2768 - - - -
1.2524 40900 0.3065 - - - -
1.2555 41000 0.309 1.2609 0.8644 0.704 0.4467
1.2586 41100 0.377 - - - -
1.2616 41200 0.3031 - - - -
1.2647 41300 0.2317 - - - -
1.2678 41400 0.2504 - - - -
1.2708 41500 0.2546 - - - -
1.2739 41600 0.2859 - - - -
1.2769 41700 0.3507 - - - -
1.2800 41800 0.2578 - - - -
1.2831 41900 0.297 - - - -
1.2861 42000 0.3016 1.2546 0.8479 0.7115 0.4578
1.2892 42100 0.2067 - - - -
1.2923 42200 0.3729 - - - -
1.2953 42300 0.2365 - - - -
1.2984 42400 0.2855 - - - -
1.3014 42500 0.2272 - - - -
1.3045 42600 0.2688 - - - -
1.3076 42700 0.2285 - - - -
1.3106 42800 0.2615 - - - -
1.3137 42900 0.2599 - - - -
1.3168 43000 0.2968 1.2860 0.8800 0.7071 0.4599
1.3198 43100 0.2464 - - - -
1.3229 43200 0.2673 - - - -
1.3259 43300 0.2108 - - - -
1.3290 43400 0.2353 - - - -
1.3321 43500 0.2396 - - - -
1.3351 43600 0.237 - - - -
1.3382 43700 0.2083 - - - -
1.3413 43800 0.2638 - - - -
1.3443 43900 0.2888 - - - -
1.3474 44000 0.3166 1.2710 0.8729 0.7052 0.4501
1.3504 44100 0.1949 - - - -
1.3535 44200 0.2285 - - - -
1.3566 44300 0.1923 - - - -
1.3596 44400 0.1875 - - - -
1.3627 44500 0.2736 - - - -
1.3658 44600 0.2154 - - - -
1.3688 44700 0.1975 - - - -
1.3719 44800 0.1799 - - - -
1.3749 44900 0.2417 - - - -
1.3780 45000 0.3224 1.3032 0.8788 0.7072 0.4521
1.3811 45100 0.2433 - - - -
1.3841 45200 0.269 - - - -
1.3872 45300 0.2034 - - - -
1.3902 45400 0.236 - - - -
1.3933 45500 0.2599 - - - -
1.3964 45600 0.1798 - - - -
1.3994 45700 0.1412 - - - -
1.4025 45800 0.215 - - - -
1.4056 45900 0.2081 - - - -
1.4086 46000 0.2277 1.2555 0.8621 0.7075 0.4577
1.4117 46100 0.2005 - - - -
1.4147 46200 0.2051 - - - -
1.4178 46300 0.1588 - - - -
1.4209 46400 0.2318 - - - -
1.4239 46500 0.205 - - - -
1.4270 46600 0.2404 - - - -
1.4301 46700 0.2167 - - - -
1.4331 46800 0.1729 - - - -
1.4362 46900 0.1866 - - - -
1.4392 47000 0.2168 1.3006 0.8624 0.7094 0.4562
1.4423 47100 0.1615 - - - -
1.4454 47200 0.2104 - - - -
1.4484 47300 0.2051 - - - -
1.4515 47400 0.1904 - - - -
1.4546 47500 0.1773 - - - -
1.4576 47600 0.1494 - - - -
1.4607 47700 0.1668 - - - -
1.4637 47800 0.1527 - - - -
1.4668 47900 0.1724 - - - -
1.4699 48000 0.1707 1.3098 0.8911 0.7093 0.4421
1.4729 48100 0.2147 - - - -
1.4760 48200 0.1513 - - - -
1.4791 48300 0.2049 - - - -
1.4821 48400 0.171 - - - -
1.4852 48500 0.1283 - - - -
1.4882 48600 0.1768 - - - -
1.4913 48700 0.172 - - - -
1.4944 48800 0.2131 - - - -
1.4974 48900 0.1621 - - - -
1.5005 49000 0.1941 1.3623 0.8859 0.7091 0.4501
1.5036 49100 0.1493 - - - -
1.5066 49200 0.1544 - - - -
1.5097 49300 0.1524 - - - -
1.5127 49400 0.1137 - - - -
1.5158 49500 0.1611 - - - -
1.5189 49600 0.1396 - - - -
1.5219 49700 0.1462 - - - -
1.5250 49800 0.1261 - - - -
1.5280 49900 0.122 - - - -
1.5311 50000 0.1478 1.3027 0.8766 0.7093 0.4555
1.5342 50100 0.1324 - - - -
1.5372 50200 0.1468 - - - -
1.5403 50300 0.1795 - - - -
1.5434 50400 0.1308 - - - -
1.5464 50500 0.1796 - - - -
1.5495 50600 0.2207 - - - -
1.5525 50700 0.1383 - - - -
1.5556 50800 0.0884 - - - -
1.5587 50900 0.1208 - - - -
1.5617 51000 0.1139 1.4073 0.9156 0.7061 0.4502
1.5648 51100 0.169 - - - -
1.5679 51200 0.1142 - - - -
1.5709 51300 0.1269 - - - -
1.5740 51400 0.1664 - - - -
1.5770 51500 0.1191 - - - -
1.5801 51600 0.2078 - - - -
1.5832 51700 0.1045 - - - -
1.5862 51800 0.1564 - - - -
1.5893 51900 0.219 - - - -
1.5924 52000 0.1308 1.3284 0.9085 0.7003 0.4439
1.5954 52100 0.1002 - - - -
1.5985 52200 0.1133 - - - -
1.6015 52300 0.1612 - - - -
1.6046 52400 0.1216 - - - -
1.6077 52500 0.1767 - - - -
1.6107 52600 0.1198 - - - -
1.6138 52700 0.1426 - - - -
1.6169 52800 0.1505 - - - -
1.6199 52900 0.1503 - - - -
1.6230 53000 0.161 1.3557 0.9038 0.7073 0.4517
1.6260 53100 0.1799 - - - -
1.6291 53200 0.1794 - - - -
1.6322 53300 0.1527 - - - -
1.6352 53400 0.1093 - - - -
1.6383 53500 0.1338 - - - -
1.6414 53600 0.1515 - - - -
1.6444 53700 0.1415 - - - -
1.6475 53800 0.1083 - - - -
1.6505 53900 0.0896 - - - -
1.6536 54000 0.1524 1.4412 0.9069 0.7047 0.4428
1.6567 54100 0.1153 - - - -
1.6597 54200 0.1643 - - - -
1.6628 54300 0.0891 - - - -
1.6659 54400 0.1331 - - - -
1.6689 54500 0.14 - - - -
1.6720 54600 0.2027 - - - -
1.6750 54700 0.112 - - - -
1.6781 54800 0.1932 - - - -
1.6812 54900 0.1298 - - - -
1.6842 55000 0.1509 1.3844 0.8949 0.7094 0.4458
1.6873 55100 0.113 - - - -
1.6903 55200 0.1516 - - - -
1.6934 55300 0.1523 - - - -
1.6965 55400 0.1627 - - - -
1.6995 55500 0.1142 - - - -
1.7026 55600 0.1054 - - - -
1.7057 55700 0.1438 - - - -
1.7087 55800 0.0908 - - - -
1.7118 55900 0.1311 - - - -
1.7148 56000 0.0691 1.4079 0.9229 0.7051 0.4484
1.7179 56100 0.1617 - - - -
1.7210 56200 0.1709 - - - -
1.7240 56300 0.102 - - - -
1.7271 56400 0.1384 - - - -
1.7302 56500 0.1339 - - - -
1.7332 56600 0.1961 - - - -
1.7363 56700 0.1549 - - - -
1.7393 56800 0.1545 - - - -
1.7424 56900 0.1175 - - - -
1.7455 57000 0.1447 1.4055 0.9385 0.7006 0.4433
1.7485 57100 0.1392 - - - -
1.7516 57200 0.0765 - - - -
1.7547 57300 0.1444 - - - -
1.7577 57400 0.1617 - - - -
1.7608 57500 0.164 - - - -
1.7638 57600 0.1584 - - - -
1.7669 57700 0.1613 - - - -
1.7700 57800 0.1381 - - - -
1.7730 57900 0.132 - - - -
1.7761 58000 0.1373 1.4008 0.9141 0.7088 0.4456
1.7792 58100 0.1018 - - - -
1.7822 58200 0.0882 - - - -
1.7853 58300 0.1232 - - - -
1.7883 58400 0.1111 - - - -
1.7914 58500 0.0985 - - - -
1.7945 58600 0.1063 - - - -
1.7975 58700 0.0696 - - - -
1.8006 58800 0.113 - - - -
1.8037 58900 0.1048 - - - -
1.8067 59000 0.1305 1.4202 0.9253 0.7046 0.4450
1.8098 59100 0.1203 - - - -
1.8128 59200 0.0975 - - - -
1.8159 59300 0.1163 - - - -
1.8190 59400 0.163 - - - -
1.8220 59500 0.1438 - - - -
1.8251 59600 0.1465 - - - -
1.8281 59700 0.1345 - - - -
1.8312 59800 0.1726 - - - -
1.8343 59900 0.1268 - - - -
1.8373 60000 0.0755 1.4523 0.9355 0.7059 0.4424
1.8404 60100 0.1033 - - - -
1.8435 60200 0.1231 - - - -
1.8465 60300 0.1272 - - - -
1.8496 60400 0.1233 - - - -
1.8526 60500 0.1144 - - - -
1.8557 60600 0.1158 - - - -
1.8588 60700 0.1266 - - - -
1.8618 60800 0.0837 - - - -
1.8649 60900 0.1247 - - - -
1.8680 61000 0.1297 1.4443 0.9315 0.7037 0.4498
1.8710 61100 0.1014 - - - -
1.8741 61200 0.127 - - - -
1.8771 61300 0.128 - - - -
1.8802 61400 0.1021 - - - -
1.8833 61500 0.1625 - - - -
1.8863 61600 0.1177 - - - -
1.8894 61700 0.1241 - - - -
1.8925 61800 0.1289 - - - -
1.8955 61900 0.1144 - - - -
1.8986 62000 0.0968 1.4650 0.9320 0.7012 0.4421
1.9016 62100 0.0951 - - - -
1.9047 62200 0.1262 - - - -
1.9078 62300 0.1387 - - - -
1.9108 62400 0.129 - - - -
1.9139 62500 0.088 - - - -
1.9170 62600 0.1166 - - - -
1.9200 62700 0.1536 - - - -
1.9231 62800 0.1216 - - - -
1.9261 62900 0.1326 - - - -
1.9292 63000 0.1014 1.4315 0.9462 0.6982 0.4377
1.9323 63100 0.1152 - - - -
1.9353 63200 0.0821 - - - -
1.9384 63300 0.1374 - - - -
1.9415 63400 0.0827 - - - -
1.9445 63500 0.1104 - - - -
1.9476 63600 0.1578 - - - -
1.9506 63700 0.1232 - - - -
1.9537 63800 0.1482 - - - -
1.9568 63900 0.1156 - - - -
1.9598 64000 0.1177 1.4263 0.9434 0.706 0.4420
1.9629 64100 0.1074 - - - -
1.9659 64200 0.1385 - - - -
1.9690 64300 0.1083 - - - -
1.9721 64400 0.1138 - - - -
1.9751 64500 0.1383 - - - -
1.9782 64600 0.0786 - - - -
1.9813 64700 0.1043 - - - -
1.9843 64800 0.1112 - - - -
1.9874 64900 0.1237 - - - -
1.9904 65000 0.1073 1.3901 0.9587 0.7002 0.4438
1.9935 65100 0.1174 - - - -
1.9966 65200 0.1091 - - - -
1.9996 65300 0.1143 - - - -
2.0027 65400 0.1044 - - - -
2.0058 65500 0.1279 - - - -
2.0088 65600 0.13 - - - -
2.0119 65700 0.1299 - - - -
2.0149 65800 0.1017 - - - -
2.0180 65900 0.124 - - - -
2.0211 66000 0.1062 1.4390 0.9290 0.704 0.4440
2.0241 66100 0.1634 - - - -
2.0272 66200 0.1149 - - - -
2.0303 66300 0.0682 - - - -
2.0333 66400 0.1386 - - - -
2.0364 66500 0.0861 - - - -
2.0394 66600 0.0669 - - - -
2.0425 66700 0.0944 - - - -
2.0456 66800 0.1332 - - - -
2.0486 66900 0.0884 - - - -
2.0517 67000 0.122 1.5088 0.9513 0.7063 0.4492
2.0548 67100 0.0934 - - - -
2.0578 67200 0.102 - - - -
2.0609 67300 0.1402 - - - -
2.0639 67400 0.1394 - - - -
2.0670 67500 0.1067 - - - -
2.0701 67600 0.1052 - - - -
2.0731 67700 0.1267 - - - -
2.0762 67800 0.1048 - - - -
2.0793 67900 0.0962 - - - -
2.0823 68000 0.0929 1.4530 0.9247 0.7109 0.4491
2.0854 68100 0.1298 - - - -
2.0884 68200 0.1332 - - - -
2.0915 68300 0.0913 - - - -
2.0946 68400 0.0843 - - - -
2.0976 68500 0.0846 - - - -
2.1007 68600 0.1142 - - - -
2.1037 68700 0.1403 - - - -
2.1068 68800 0.0961 - - - -
2.1099 68900 0.0984 - - - -
2.1129 69000 0.1509 1.4343 0.9552 0.7039 0.4382
2.1160 69100 0.0947 - - - -
2.1191 69200 0.0877 - - - -
2.1221 69300 0.0786 - - - -
2.1252 69400 0.0754 - - - -
2.1282 69500 0.0765 - - - -
2.1313 69600 0.0632 - - - -
2.1344 69700 0.1792 - - - -
2.1374 69800 0.0666 - - - -
2.1405 69900 0.1225 - - - -
2.1436 70000 0.0922 1.4291 0.9393 0.7053 0.4357
2.1466 70100 0.126 - - - -
2.1497 70200 0.0991 - - - -
2.1527 70300 0.0759 - - - -
2.1558 70400 0.1024 - - - -
2.1589 70500 0.0894 - - - -
2.1619 70600 0.113 - - - -
2.1650 70700 0.1084 - - - -
2.1681 70800 0.1013 - - - -
2.1711 70900 0.111 - - - -
2.1742 71000 0.0965 1.3915 0.9477 0.7052 0.4437
2.1772 71100 0.0837 - - - -
2.1803 71200 0.0347 - - - -
2.1834 71300 0.1215 - - - -
2.1864 71400 0.0799 - - - -
2.1895 71500 0.1173 - - - -
2.1926 71600 0.0964 - - - -
2.1956 71700 0.1036 - - - -
2.1987 71800 0.0952 - - - -
2.2017 71900 0.0752 - - - -
2.2048 72000 0.0824 1.4657 0.9593 0.7011 0.4397
2.2079 72100 0.1081 - - - -
2.2109 72200 0.0718 - - - -
2.2140 72300 0.0644 - - - -
2.2171 72400 0.0919 - - - -
2.2201 72500 0.1099 - - - -
2.2232 72600 0.072 - - - -
2.2262 72700 0.0675 - - - -
2.2293 72800 0.0568 - - - -
2.2324 72900 0.0664 - - - -
2.2354 73000 0.0926 1.4526 0.9607 0.701 0.4383
2.2385 73100 0.1089 - - - -
2.2415 73200 0.1208 - - - -
2.2446 73300 0.0583 - - - -
2.2477 73400 0.0546 - - - -
2.2507 73500 0.086 - - - -
2.2538 73600 0.1029 - - - -
2.2569 73700 0.0803 - - - -
2.2599 73800 0.114 - - - -
2.2630 73900 0.0542 - - - -
2.2660 74000 0.0732 1.4112 0.9411 0.7028 0.4454
2.2691 74100 0.0641 - - - -
2.2722 74200 0.072 - - - -
2.2752 74300 0.0806 - - - -
2.2783 74400 0.0845 - - - -
2.2814 74500 0.0599 - - - -
2.2844 74600 0.069 - - - -
2.2875 74700 0.0808 - - - -
2.2905 74800 0.0903 - - - -
2.2936 74900 0.0693 - - - -
2.2967 75000 0.074 1.4487 0.9686 0.6945 0.4495
2.2997 75100 0.1261 - - - -
2.3028 75200 0.055 - - - -
2.3059 75300 0.0828 - - - -
2.3089 75400 0.0735 - - - -
2.3120 75500 0.0539 - - - -
2.3150 75600 0.0763 - - - -
2.3181 75700 0.0598 - - - -
2.3212 75800 0.0782 - - - -
2.3242 75900 0.0681 - - - -
2.3273 76000 0.0497 1.4493 0.9589 0.6972 0.4354
2.3304 76100 0.0353 - - - -
2.3334 76200 0.0669 - - - -
2.3365 76300 0.064 - - - -
2.3395 76400 0.0814 - - - -
2.3426 76500 0.0786 - - - -
2.3457 76600 0.091 - - - -
2.3487 76700 0.0861 - - - -
2.3518 76800 0.0445 - - - -
2.3549 76900 0.0589 - - - -
2.3579 77000 0.0318 1.4455 0.9647 0.7012 0.4390
2.3610 77100 0.0425 - - - -
2.3640 77200 0.0605 - - - -
2.3671 77300 0.0523 - - - -
2.3702 77400 0.0715 - - - -
2.3732 77500 0.0756 - - - -
2.3763 77600 0.0911 - - - -
2.3793 77700 0.1023 - - - -
2.3824 77800 0.0538 - - - -
2.3855 77900 0.0571 - - - -
2.3885 78000 0.0505 1.4434 0.9554 0.7048 0.4411
2.3916 78100 0.1114 - - - -
2.3947 78200 0.0368 - - - -
2.3977 78300 0.0636 - - - -
2.4008 78400 0.0419 - - - -
2.4038 78500 0.0691 - - - -
2.4069 78600 0.0814 - - - -
2.4100 78700 0.0644 - - - -
2.4130 78800 0.0584 - - - -
2.4161 78900 0.0745 - - - -
2.4192 79000 0.0558 1.4218 0.9631 0.7024 0.4399
2.4222 79100 0.0478 - - - -
2.4253 79200 0.1116 - - - -
2.4283 79300 0.0487 - - - -
2.4314 79400 0.0457 - - - -
2.4345 79500 0.0441 - - - -
2.4375 79600 0.037 - - - -
2.4406 79700 0.0382 - - - -
2.4437 79800 0.0453 - - - -
2.4467 79900 0.0625 - - - -
2.4498 80000 0.0649 1.4950 0.9400 0.7053 0.4516
2.4528 80100 0.0417 - - - -
2.4559 80200 0.03 - - - -
2.4590 80300 0.0281 - - - -
2.4620 80400 0.0637 - - - -
2.4651 80500 0.0415 - - - -
2.4682 80600 0.048 - - - -
2.4712 80700 0.0653 - - - -
2.4743 80800 0.0382 - - - -
2.4773 80900 0.0524 - - - -
2.4804 81000 0.0699 1.4317 0.9833 0.7024 0.4487
2.4835 81100 0.0728 - - - -
2.4865 81200 0.0346 - - - -
2.4896 81300 0.0448 - - - -
2.4927 81400 0.0425 - - - -
2.4957 81500 0.0941 - - - -
2.4988 81600 0.0385 - - - -
2.5018 81700 0.0802 - - - -
2.5049 81800 0.033 - - - -
2.5080 81900 0.0653 - - - -
2.5110 82000 0.0435 1.4630 0.9643 0.7006 0.4467
2.5141 82100 0.0301 - - - -
2.5171 82200 0.0392 - - - -
2.5202 82300 0.0402 - - - -
2.5233 82400 0.0584 - - - -
2.5263 82500 0.0334 - - - -
2.5294 82600 0.0409 - - - -
2.5325 82700 0.0587 - - - -
2.5355 82800 0.0412 - - - -
2.5386 82900 0.0477 - - - -
2.5416 83000 0.0485 1.4052 0.9665 0.7021 0.4382
2.5447 83100 0.0501 - - - -
2.5478 83200 0.0492 - - - -
2.5508 83300 0.0829 - - - -
2.5539 83400 0.0571 - - - -
2.5570 83500 0.0353 - - - -
2.5600 83600 0.0439 - - - -
2.5631 83700 0.0264 - - - -
2.5661 83800 0.0743 - - - -
2.5692 83900 0.0467 - - - -
2.5723 84000 0.0442 1.4663 0.9854 0.7022 0.4380
2.5753 84100 0.0461 - - - -
2.5784 84200 0.0542 - - - -
2.5815 84300 0.0842 - - - -
2.5845 84400 0.0361 - - - -
2.5876 84500 0.0577 - - - -
2.5906 84600 0.0345 - - - -
2.5937 84700 0.0296 - - - -
2.5968 84800 0.025 - - - -
2.5998 84900 0.0575 - - - -
2.6029 85000 0.0567 1.5179 0.9760 0.7008 0.4469
2.6060 85100 0.0528 - - - -
2.6090 85200 0.0437 - - - -
2.6121 85300 0.0291 - - - -
2.6151 85400 0.0689 - - - -
2.6182 85500 0.0328 - - - -
2.6213 85600 0.0473 - - - -
2.6243 85700 0.0682 - - - -
2.6274 85800 0.0544 - - - -
2.6305 85900 0.0641 - - - -
2.6335 86000 0.029 1.4558 0.9576 0.7072 0.4448
2.6366 86100 0.0364 - - - -
2.6396 86200 0.0365 - - - -
2.6427 86300 0.0514 - - - -
2.6458 86400 0.0417 - - - -
2.6488 86500 0.0309 - - - -
2.6519 86600 0.035 - - - -
2.6549 86700 0.044 - - - -
2.6580 86800 0.0694 - - - -
2.6611 86900 0.0194 - - - -
2.6641 87000 0.0373 1.5556 0.9819 0.7052 0.4339
2.6672 87100 0.0349 - - - -
2.6703 87200 0.0561 - - - -
2.6733 87300 0.0487 - - - -
2.6764 87400 0.0722 - - - -
2.6794 87500 0.0501 - - - -
2.6825 87600 0.0404 - - - -
2.6856 87700 0.0533 - - - -
2.6886 87800 0.0371 - - - -
2.6917 87900 0.0585 - - - -
2.6948 88000 0.0482 1.4305 0.9550 0.7053 0.4397
2.6978 88100 0.0731 - - - -
2.7009 88200 0.0312 - - - -
2.7039 88300 0.0339 - - - -
2.7070 88400 0.0348 - - - -
2.7101 88500 0.0509 - - - -
2.7131 88600 0.0343 - - - -
2.7162 88700 0.0282 - - - -
2.7193 88800 0.0518 - - - -
2.7223 88900 0.0569 - - - -
2.7254 89000 0.0427 1.4783 0.9810 0.7066 0.4263
2.7284 89100 0.0554 - - - -
2.7315 89200 0.0368 - - - -
2.7346 89300 0.0301 - - - -
2.7376 89400 0.0469 - - - -
2.7407 89500 0.0479 - - - -
2.7438 89600 0.0586 - - - -
2.7468 89700 0.0687 - - - -
2.7499 89800 0.0427 - - - -
2.7529 89900 0.0551 - - - -
2.7560 90000 0.0255 1.4759 0.9758 0.7011 0.4434
2.7591 90100 0.0348 - - - -
2.7621 90200 0.0536 - - - -
2.7652 90300 0.0554 - - - -
2.7683 90400 0.0367 - - - -
2.7713 90500 0.0185 - - - -
2.7744 90600 0.0498 - - - -
2.7774 90700 0.0296 - - - -
2.7805 90800 0.0132 - - - -
2.7836 90900 0.0607 - - - -
2.7866 91000 0.0303 1.4869 0.9817 0.704 0.4442
2.7897 91100 0.0463 - - - -
2.7927 91200 0.0302 - - - -
2.7958 91300 0.04 - - - -
2.7989 91400 0.0406 - - - -
2.8019 91500 0.0202 - - - -
2.8050 91600 0.0397 - - - -
2.8081 91700 0.0313 - - - -
2.8111 91800 0.0419 - - - -
2.8142 91900 0.055 - - - -
2.8172 92000 0.0377 1.5091 0.9752 0.7071 0.4336
2.8203 92100 0.0386 - - - -
2.8234 92200 0.0497 - - - -
2.8264 92300 0.061 - - - -
2.8295 92400 0.0683 - - - -
2.8326 92500 0.0846 - - - -
2.8356 92600 0.0121 - - - -
2.8387 92700 0.0268 - - - -
2.8417 92800 0.0205 - - - -
2.8448 92900 0.0414 - - - -
2.8479 93000 0.0443 1.5421 0.9798 0.708 0.4298
2.8509 93100 0.0365 - - - -
2.8540 93200 0.0431 - - - -
2.8571 93300 0.0254 - - - -
2.8601 93400 0.0348 - - - -
2.8632 93500 0.0408 - - - -
2.8662 93600 0.0481 - - - -
2.8693 93700 0.0303 - - - -
2.8724 93800 0.0512 - - - -
2.8754 93900 0.0563 - - - -
2.8785 94000 0.0506 1.6061 0.9909 0.7043 0.4392
2.8816 94100 0.0224 - - - -
2.8846 94200 0.0652 - - - -
2.8877 94300 0.0313 - - - -
2.8907 94400 0.0657 - - - -
2.8938 94500 0.0605 - - - -
2.8969 94600 0.0332 - - - -
2.8999 94700 0.0126 - - - -
2.9030 94800 0.0374 - - - -
2.9061 94900 0.051 - - - -
2.9091 95000 0.0477 1.5915 1.0124 0.702 0.4299

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.0
  • Transformers: 4.38.2
  • PyTorch: 2.1.2+cu121
  • Accelerate: 0.27.2
  • Datasets: 2.19.1
  • Tokenizers: 0.15.2

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

CachedMultipleNegativesRankingLoss

@misc{gao2021scaling,
    title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup}, 
    author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
    year={2021},
    eprint={2101.06983},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

AnglELoss

@misc{li2023angleoptimized,
    title={AnglE-optimized Text Embeddings}, 
    author={Xianming Li and Jing Li},
    year={2023},
    eprint={2309.12871},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
5
Safetensors
Model size
137M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for lv12/esci-nomic-embed-text-v1_5_2

Finetuned
(11)
this model

Evaluation results