lxyuan's picture
Update README.md
a3a4a50
|
raw
history blame
4.04 kB
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- chest-xray-classification
- keremberke/chest-xray-classification
metrics:
- accuracy
model-index:
- name: vit-xray-pneumonia-classification
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: chest-xray-classification
type: chest-xray-classification
config: full
split: validation
args: full
metrics:
- name: Accuracy
type: accuracy
value: 0.9742489270386266
pipeline_tag: image-classification
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-xray-pneumonia-classification
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the chest-xray-classification dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0868
- Accuracy: 0.9742
## Inference example
```python
from transformers import pipeline
classifier = pipeline(model="lxyuan/vit-xray-pneumonia-classification")
# image taken from https://www.news-medical.net/health/What-is-Viral-Pneumonia.aspx
classifier("https://d2jx2rerrg6sh3.cloudfront.net/image-handler/ts/20200618040600/ri/650/picture/2020/6/shutterstock_786937069.jpg")
>>>
[{'score': 0.990334689617157, 'label': 'PNEUMONIA'},
{'score': 0.009665317833423615, 'label': 'NORMAL'}]
```
## Training procedure
Notebook link: [here](https://github.com/LxYuan0420/nlp/blob/main/notebooks/ViT-xray-classification.ipynb)
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
```python
from transformers import EarlyStoppingCallback
training_args = TrainingArguments(
output_dir="vit-xray-pneumonia-classification",
remove_unused_columns=False,
evaluation_strategy="epoch",
save_strategy="epoch",
logging_strategy="epoch",
learning_rate=5e-5,
per_device_train_batch_size=16,
gradient_accumulation_steps=4,
per_device_eval_batch_size=16,
num_train_epochs=15,
save_total_limit=2,
warmup_ratio=0.1,
load_best_model_at_end=True,
metric_for_best_model="eval_loss",
greater_is_better=False,
fp16=True,
push_to_hub=True,
report_to="tensorboard"
)
early_stopping = EarlyStoppingCallback(early_stopping_patience=3)
trainer = Trainer(
model=model,
args=training_args,
data_collator=data_collator,
train_dataset=train_ds,
eval_dataset=val_ds,
tokenizer=processor,
compute_metrics=compute_metrics,
callbacks=[early_stopping],
)
```
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.5152 | 0.99 | 63 | 0.2507 | 0.9245 |
| 0.2334 | 1.99 | 127 | 0.1766 | 0.9382 |
| 0.1647 | 3.0 | 191 | 0.1218 | 0.9588 |
| 0.144 | 4.0 | 255 | 0.1222 | 0.9502 |
| 0.1348 | 4.99 | 318 | 0.1293 | 0.9571 |
| 0.1276 | 5.99 | 382 | 0.1000 | 0.9665 |
| 0.1175 | 7.0 | 446 | 0.1177 | 0.9502 |
| 0.109 | 8.0 | 510 | 0.1079 | 0.9665 |
| 0.0914 | 8.99 | 573 | 0.0804 | 0.9717 |
| 0.0872 | 9.99 | 637 | 0.0800 | 0.9717 |
| 0.0804 | 11.0 | 701 | 0.0862 | 0.9682 |
| 0.0935 | 12.0 | 765 | 0.0883 | 0.9657 |
| 0.0686 | 12.99 | 828 | 0.0868 | 0.9742 |
### Framework versions
- Transformers 4.30.2
- Pytorch 1.9.0+cu102
- Datasets 2.12.0
- Tokenizers 0.13.3