lyhourt's picture
End of training
971c009 verified
metadata
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - lyhourt/clean_6
metrics:
  - wer
model-index:
  - name: whisper-small-clean_6-v4
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: lyhourt/clean_6
          type: lyhourt/clean_6
        metrics:
          - name: Wer
            type: wer
            value: 24.014921893215202

whisper-small-clean_6-v4

This model is a fine-tuned version of openai/whisper-small on the lyhourt/clean_6 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2886
  • Wer: 24.0149

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1207 0.5 200 0.3080 25.4138
0.1827 1.0 400 0.2953 24.7144
0.0907 1.1342 600 0.2921 24.3413
0.0904 1.5123 800 0.2900 24.3064
0.0823 1.8904 1000 0.2886 24.0149

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1