Edit model card

mva_ner_2

This model is a fine-tuned version of prajjwal1/bert-tiny on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0026
  • Overall Precision: 0.9873
  • Overall Recall: 0.9873
  • Overall F1: 0.9873
  • Overall Accuracy: 0.9987
  • Year F1: 1.0
  • Years Ago F1: 0.9844

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 500

Training results

Training Loss Epoch Step Validation Loss Overall Precision Overall Recall Overall F1 Overall Accuracy Year F1 Years Ago F1
0.0099 35.71 1000 0.0225 0.9625 0.9747 0.9686 0.9960 1.0 0.9612
0.0078 71.43 2000 0.0157 0.9625 0.9747 0.9686 0.9960 1.0 0.9612
0.0078 107.14 3000 0.0075 0.9873 0.9873 0.9873 0.9987 1.0 0.9844
0.0061 142.86 4000 0.0062 0.9873 0.9873 0.9873 0.9987 1.0 0.9844
0.0053 178.57 5000 0.0032 0.9873 0.9873 0.9873 0.9987 1.0 0.9844
0.0049 214.29 6000 0.0179 0.9747 0.9747 0.9747 0.9973 1.0 0.9688
0.0049 250.0 7000 0.0011 1.0 1.0 1.0 1.0 1.0 1.0
0.0034 285.71 8000 0.0064 0.9747 0.9747 0.9747 0.9973 1.0 0.9688
0.0037 321.43 9000 0.0148 0.9875 1.0 0.9937 0.9987 1.0 0.9922
0.0035 357.14 10000 0.0006 1.0 1.0 1.0 1.0 1.0 1.0
0.003 392.86 11000 0.0007 1.0 1.0 1.0 1.0 1.0 1.0
0.0028 428.57 12000 0.0032 0.9873 0.9873 0.9873 0.9987 1.0 0.9844
0.0025 464.29 13000 0.0006 1.0 1.0 1.0 1.0 1.0 1.0
0.0024 500.0 14000 0.0026 0.9873 0.9873 0.9873 0.9987 1.0 0.9844

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for m-aliabbas1/mva_ner_2

Finetuned
(50)
this model