|
--- |
|
language: tr |
|
datasets: |
|
- common_voice |
|
tags: |
|
- audio |
|
- automatic-speech-recognition |
|
- speech |
|
- xlsr-fine-tuning-week |
|
license: apache-2.0 |
|
widget: |
|
- label: Common Voice sample 1378 |
|
src: https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-turkish/resolve/main/sample1378.flac |
|
- label: Common Voice sample 1589 |
|
src: https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-turkish/resolve/main/sample1589.flac |
|
model-index: |
|
- name: XLSR Wav2Vec2 Turkish by Mehrdad Farahani |
|
results: |
|
- task: |
|
name: Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice tr |
|
type: common_voice |
|
args: tr |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 27.51 |
|
|
|
--- |
|
|
|
# Wav2Vec2-Large-XLSR-53-Turkish |
|
|
|
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Turkish using [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. |
|
|
|
## Usage |
|
The model can be used directly (without a language model) as follows: |
|
|
|
**Requirements** |
|
```bash |
|
# requirement packages |
|
!pip install git+https://github.com/huggingface/datasets.git |
|
!pip install git+https://github.com/huggingface/transformers.git |
|
!pip install torchaudio |
|
!pip install librosa |
|
!pip install jiwer |
|
``` |
|
|
|
|
|
**Prediction** |
|
```python |
|
import librosa |
|
import torch |
|
import torchaudio |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
from datasets import load_dataset |
|
|
|
import numpy as np |
|
import re |
|
import string |
|
|
|
import IPython.display as ipd |
|
|
|
chars_to_ignore = [ |
|
",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "�", |
|
"#", "!", "?", "«", "»", "(", ")", "؛", ",", "?", ".", "!", "-", ";", ":", '"', |
|
"“", "%", "‘", "�", "–", "…", "_", "”", '“', '„' |
|
] |
|
chars_to_mapping = { |
|
"\u200c": " ", "\u200d": " ", "\u200e": " ", "\u200f": " ", "\ufeff": " ", |
|
} |
|
|
|
def multiple_replace(text, chars_to_mapping): |
|
pattern = "|".join(map(re.escape, chars_to_mapping.keys())) |
|
return re.sub(pattern, lambda m: chars_to_mapping[m.group()], str(text)) |
|
|
|
def remove_special_characters(text, chars_to_ignore_regex): |
|
text = re.sub(chars_to_ignore_regex, '', text).lower() + " " |
|
return text |
|
|
|
def normalizer(batch, chars_to_ignore, chars_to_mapping): |
|
chars_to_ignore_regex = f"""[{"".join(chars_to_ignore)}]""" |
|
text = batch["sentence"].lower().strip() |
|
|
|
text = text.replace("\u0307", " ").strip() |
|
text = multiple_replace(text, chars_to_mapping) |
|
text = remove_special_characters(text, chars_to_ignore_regex) |
|
|
|
batch["sentence"] = text |
|
return batch |
|
|
|
|
|
def speech_file_to_array_fn(batch): |
|
speech_array, sampling_rate = torchaudio.load(batch["path"]) |
|
speech_array = speech_array.squeeze().numpy() |
|
speech_array = librosa.resample(np.asarray(speech_array), sampling_rate, 16_000) |
|
|
|
batch["speech"] = speech_array |
|
return batch |
|
|
|
|
|
def predict(batch): |
|
features = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
|
|
input_values = features.input_values.to(device) |
|
attention_mask = features.attention_mask.to(device) |
|
|
|
with torch.no_grad(): |
|
logits = model(input_values, attention_mask=attention_mask).logits |
|
|
|
pred_ids = torch.argmax(logits, dim=-1) |
|
|
|
batch["predicted"] = processor.batch_decode(pred_ids)[0] |
|
return batch |
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
processor = Wav2Vec2Processor.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-turkish") |
|
model = Wav2Vec2ForCTC.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-turkish").to(device) |
|
|
|
dataset = load_dataset("common_voice", "et", split="test[:1%]") |
|
dataset = dataset.map( |
|
normalizer, |
|
fn_kwargs={"chars_to_ignore": chars_to_ignore, "chars_to_mapping": chars_to_mapping}, |
|
remove_columns=list(set(dataset.column_names) - set(['sentence', 'path'])) |
|
) |
|
|
|
dataset = dataset.map(speech_file_to_array_fn) |
|
result = dataset.map(predict) |
|
|
|
max_items = np.random.randint(0, len(result), 10).tolist() |
|
for i in max_items: |
|
reference, predicted = result["sentence"][i], result["predicted"][i] |
|
print("reference:", reference) |
|
print("predicted:", predicted) |
|
print('---') |
|
``` |
|
|
|
**Output:** |
|
```text |
|
reference: ülke şu anda iki federasyona üye |
|
predicted: ülke şu anda iki federasyona üye |
|
--- |
|
reference: foruma dört yüzde fazla kişi katıldı |
|
predicted: soruma dört yüzden fazla kişi katıldı |
|
--- |
|
reference: mobi altmış üç çalışanları da mutsuz |
|
predicted: mobia haltmış üç çalışanları da mutsur |
|
--- |
|
reference: kentin mali esnekliğinin düşük olduğu bildirildi |
|
predicted: kentin mali esnekleğinin düşük olduğu bildirildi |
|
--- |
|
reference: fouere iki ülkeyi sorunu abartmamaya çağırdı |
|
predicted: foor iki ülkeyi soruna abartmamaya çanayordı |
|
--- |
|
reference: o ülkeden herhangi bir tepki geldi mi |
|
predicted: o ülkeden herhayın bir tepki geldi mi |
|
--- |
|
reference: bunlara asla sırtımızı dönmeyeceğiz |
|
predicted: bunlara asla sırtımızı dönmeyeceğiz |
|
--- |
|
reference: sizi ayakta tutan nedir |
|
predicted: sizi ayakta tutan nedir |
|
--- |
|
reference: artık insanlar daha bireysel yaşıyor |
|
predicted: artık insanlar daha bir eyselli yaşıyor |
|
--- |
|
reference: her ikisi de diyaloga hazır olduğunu söylüyor |
|
predicted: her ikisi de diyaloğa hazır olduğunu söylüyor |
|
--- |
|
reference: merkez bankasının başlıca amacı düşük enflasyon |
|
predicted: merkez bankasının başlrıca anatı güşükyen flasyon |
|
--- |
|
reference: firefox |
|
predicted: fair foks |
|
--- |
|
reference: ülke halkı çok misafirsever ve dışa dönük |
|
predicted: ülke halktı çok isatirtever ve dışa dönük |
|
--- |
|
reference: ancak kamuoyu bu durumu pek de affetmiyor |
|
predicted: ancak kamuonyulgukirmu pek deafıf etmiyor |
|
--- |
|
reference: i ki madende iki bin beş yüzden fazla kişi çalışıyor |
|
predicted: i ki madende iki bin beş yüzden fazla kişi çalışıyor |
|
--- |
|
reference: sunnyside park dışarıdan oldukça iyi görünüyor |
|
predicted: sani sahip park dışarıdan oldukça iyi görünüyor |
|
--- |
|
reference: büyük ödül on beş bin avro |
|
predicted: büyük ödül on beş bin avro |
|
--- |
|
reference: köyümdeki camiler depoya dönüştürüldü |
|
predicted: küyümdeki camiler depoya dönüştürüldü |
|
--- |
|
reference: maç oldukça diplomatik bir sonuçla birbir bitti |
|
predicted: maç oldukça diplomatik bir sonuçla bir birbitti |
|
--- |
|
reference: kuşların ikisi de karantinada öldüler |
|
predicted: kuşların ikiste karantinada özdüler |
|
--- |
|
``` |
|
|
|
|
|
## Evaluation |
|
|
|
The model can be evaluated as follows on the Turkish test data of Common Voice. |
|
|
|
```python |
|
import librosa |
|
import torch |
|
import torchaudio |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
from datasets import load_dataset, load_metric |
|
|
|
import numpy as np |
|
import re |
|
import string |
|
|
|
|
|
chars_to_ignore = [ |
|
",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "�", |
|
"#", "!", "?", "«", "»", "(", ")", "؛", ",", "?", ".", "!", "-", ";", ":", '"', |
|
"“", "%", "‘", "�", "–", "…", "_", "”", '“', '„' |
|
] |
|
chars_to_mapping = { |
|
"\u200c": " ", "\u200d": " ", "\u200e": " ", "\u200f": " ", "\ufeff": " ", |
|
"\u0307": " " |
|
} |
|
|
|
def multiple_replace(text, chars_to_mapping): |
|
pattern = "|".join(map(re.escape, chars_to_mapping.keys())) |
|
return re.sub(pattern, lambda m: chars_to_mapping[m.group()], str(text)) |
|
|
|
def remove_special_characters(text, chars_to_ignore_regex): |
|
text = re.sub(chars_to_ignore_regex, '', text).lower() + " " |
|
return text |
|
|
|
def normalizer(batch, chars_to_ignore, chars_to_mapping): |
|
chars_to_ignore_regex = f"""[{"".join(chars_to_ignore)}]""" |
|
text = batch["sentence"].lower().strip() |
|
|
|
text = text.replace("\u0307", " ").strip() |
|
text = multiple_replace(text, chars_to_mapping) |
|
text = remove_special_characters(text, chars_to_ignore_regex) |
|
text = re.sub(" +", " ", text) |
|
text = text.strip() + " " |
|
|
|
batch["sentence"] = text |
|
return batch |
|
|
|
|
|
def speech_file_to_array_fn(batch): |
|
speech_array, sampling_rate = torchaudio.load(batch["path"]) |
|
speech_array = speech_array.squeeze().numpy() |
|
speech_array = librosa.resample(np.asarray(speech_array), sampling_rate, 16_000) |
|
|
|
batch["speech"] = speech_array |
|
return batch |
|
|
|
|
|
def predict(batch): |
|
features = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
|
|
input_values = features.input_values.to(device) |
|
attention_mask = features.attention_mask.to(device) |
|
|
|
with torch.no_grad(): |
|
logits = model(input_values, attention_mask=attention_mask).logits |
|
|
|
pred_ids = torch.argmax(logits, dim=-1) |
|
|
|
batch["predicted"] = processor.batch_decode(pred_ids)[0] |
|
return batch |
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
processor = Wav2Vec2Processor.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-turkish") |
|
model = Wav2Vec2ForCTC.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-turkish").to(device) |
|
|
|
dataset = load_dataset("common_voice", "tr", split="test") |
|
dataset = dataset.map( |
|
normalizer, |
|
fn_kwargs={"chars_to_ignore": chars_to_ignore, "chars_to_mapping": chars_to_mapping}, |
|
remove_columns=list(set(dataset.column_names) - set(['sentence', 'path'])) |
|
) |
|
|
|
dataset = dataset.map(speech_file_to_array_fn) |
|
result = dataset.map(predict) |
|
|
|
wer = load_metric("wer") |
|
|
|
print("WER: {:.2f}".format(100 * wer.compute(predictions=result["predicted"], references=result["sentence"]))) |
|
``` |
|
] |
|
|
|
**Test Result**: |
|
- WER: 27.51% |
|
|
|
|
|
## Training & Report |
|
The Common Voice `train`, `validation` datasets were used for training. |
|
|
|
You can see the training states [here](https://wandb.ai/m3hrdadfi/finetuned_wav2vec_xlsr_turkish/reports/Fine-Tuning-for-Wav2Vec2-Large-XLSR-53-Turkish--Vmlldzo1Njc1MDc?accessToken=02vm5cwbi7d342vyt7h9w9859zex0enltdmjoreyjt3bd5qwv0vs0g3u93iv92q0) |
|
|
|
The script used for training can be found [here](https://colab.research.google.com/github/m3hrdadfi/notebooks/blob/main/Fine_Tune_XLSR_Wav2Vec2_on_Turkish_ASR_with_%F0%9F%A4%97_Transformers_ipynb.ipynb) |