Edit model card

gpt2-finetuned-mcqa-sciq

This model is a fine-tuned version of openai-community/gpt2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3533
  • Bertscore Precision: 0.1082
  • Bertscore Recall: 0.1141
  • Bertscore F1: 0.1111

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Bertscore Precision Bertscore Recall Bertscore F1
4.4695 0.9999 5839 2.3612 0.1082 0.1140 0.1110
4.0507 2.0 11679 2.3533 0.1082 0.1141 0.1111
3.8779 2.9999 17518 2.3820 0.1080 0.1140 0.1110
3.2852 4.0 23358 2.4208 0.1080 0.1140 0.1109
3.6416 4.9999 29197 2.4768 0.1079 0.1139 0.1108
2.9843 6.0 35037 2.5445 0.1079 0.1139 0.1108
2.8509 6.9999 40876 2.6094 0.1079 0.1139 0.1108
2.6932 8.0 46716 2.6658 0.1078 0.1138 0.1107
2.5309 8.9999 52555 2.7283 0.1078 0.1138 0.1107
2.5619 9.9991 58390 2.7585 0.1078 0.1138 0.1107

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
14
Safetensors
Model size
124M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mNLP-project/gpt2-finetuned-mcqa-sciq

Finetuned
(1141)
this model