Edit model card

gpt2-finetuned-mcqa-sciq2-safety

This model is a fine-tuned version of openai-community/gpt2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7824
  • Bleu: 0.0816
  • Bertscore Precision: 0.4316
  • Bertscore Recall: 0.4553
  • Bertscore F1: 0.4431

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Bleu Bertscore Precision Bertscore Recall Bertscore F1
1.917 1.0 1460 1.8258 0.0856 0.4279 0.4541 0.4406
1.7299 2.0 2920 1.7928 0.0789 0.4311 0.4549 0.4427
1.6342 3.0 4380 1.7870 0.0858 0.4315 0.4542 0.4425
1.5534 4.0 5840 1.7824 0.0816 0.4316 0.4553 0.4431
1.4878 5.0 7300 1.7909 0.0797 0.4315 0.4556 0.4432
1.4554 6.0 8760 1.8021 0.0772 0.4312 0.4557 0.4431
1.3981 7.0 10220 1.8103 0.0767 0.4314 0.4558 0.4433
1.3712 8.0 11680 1.8242 0.0427 0.4315 0.4561 0.4434
1.3431 9.0 13140 1.8338 0.0416 0.4315 0.4560 0.4434
1.3354 10.0 14600 1.8390 0.0420 0.4315 0.4560 0.4434

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
15
Safetensors
Model size
124M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mNLP-project/gpt2-finetuned-mcqa-sciq2-safety

Finetuned
(1141)
this model