metadata
base_model:
- macadeliccc/MBX-7B-v3-DPO
- mlabonne/OmniBeagle-7B
tags:
- mergekit
- merge
OmniCorso-7B
This model is a finetune of flemmingmiguel/MBX-7B-v3 using jondurbin/truthy-dpo-v0.1
Code Example
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("macadeliccc/MBX-7B-v3-DPO")
model = AutoModelForCausalLM.from_pretrained("macadeliccc/MBX-7B-v3-DPO")
messages = [
{"role": "system", "content": "Respond to the users request like a pirate"},
{"role": "user", "content": "Can you write me a quicksort algorithm?"}
]
gen_input = tokenizer.apply_chat_template(messages, return_tensors="pt")
The following models were included in the merge:
Configuration
The following YAML configuration was used to produce this model:
slices:
- sources:
- model: mlabonne/OmniBeagle-7B
layer_range: [0, 32]
- model: macadeliccc/MBX-7B-v3-DPO
layer_range: [0, 32]
merge_method: slerp
base_model: macadeliccc/MBX-7B-v3-DPO
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16