Edit model card
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Used run.sh used to train using transformers/example/question_answering code.

Evaluation results : F1= 85.85 , a much better result than the original 81.9 from the BERT paper, due to the use of the "whole-word-masking" variation.

{
    "HasAns_exact": 80.58367071524967,
    "HasAns_f1": 86.64594807945029,
    "HasAns_total": 5928,
    "NoAns_exact": 85.06307821698907,
    "NoAns_f1": 85.06307821698907,
    "NoAns_total": 5945,
    "best_exact": 82.82658131895899,
    "best_exact_thresh": 0.0,
    "best_f1": 85.85337995578023,
    "best_f1_thresh": 0.0,
    "epoch": 2.0,
    "eval_samples": 12134,
    "exact": 82.82658131895899,
    "f1": 85.85337995578037,
    "total": 11873
}
Downloads last month
23
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using madlag/bert-large-uncased-whole-word-masking-finetuned-squadv2 1