SentenceTransformer based on BAAI/bge-small-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-small-en-v1.5. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-small-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Which of my investments are projected to generate the most return?',
'[{"get_portfolio(None)": "portfolio"}, {"get_expected_attribute(\'portfolio\',[\'returns\'])": "portfolio"}, {"sort(\'portfolio\',\'returns\',\'desc\')": "portfolio"}]',
'[{"get_portfolio(None)": "portfolio"}, {"factor_contribution(\'portfolio\',\'<DATES>\',\'asset_class\',\'us equity\',\'returns\')": "portfolio"}]',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6644 |
cosine_accuracy@3 | 0.8288 |
cosine_accuracy@5 | 0.863 |
cosine_accuracy@10 | 0.9178 |
cosine_precision@1 | 0.6644 |
cosine_precision@3 | 0.2763 |
cosine_precision@5 | 0.1726 |
cosine_precision@10 | 0.0918 |
cosine_recall@1 | 0.0185 |
cosine_recall@3 | 0.023 |
cosine_recall@5 | 0.024 |
cosine_recall@10 | 0.0255 |
cosine_ndcg@10 | 0.1737 |
cosine_mrr@10 | 0.748 |
cosine_map@100 | 0.0209 |
dot_accuracy@1 | 0.6644 |
dot_accuracy@3 | 0.8288 |
dot_accuracy@5 | 0.863 |
dot_accuracy@10 | 0.9178 |
dot_precision@1 | 0.6644 |
dot_precision@3 | 0.2763 |
dot_precision@5 | 0.1726 |
dot_precision@10 | 0.0918 |
dot_recall@1 | 0.0185 |
dot_recall@3 | 0.023 |
dot_recall@5 | 0.024 |
dot_recall@10 | 0.0255 |
dot_ndcg@10 | 0.1737 |
dot_mrr@10 | 0.748 |
dot_map@100 | 0.0209 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 723 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 5 tokens
- mean: 11.8 tokens
- max: 26 tokens
- min: 24 tokens
- mean: 84.41 tokens
- max: 194 tokens
- Samples:
sentence_0 sentence_1 what is my portfolio 3 year cagr?
[{"get_portfolio(None)": "portfolio"}, {"get_attribute('portfolio',['gains'],'')": "portfolio"}, {"sort('portfolio','gains','desc')": "portfolio"}]
what is my 1 year rate of return
[{"get_portfolio(None)": "portfolio"}, {"get_attribute('portfolio',['gains'],'')": "portfolio"}, {"sort('portfolio','gains','desc')": "portfolio"}]
show backtest of my performance this year?
[{"get_portfolio(None)": "portfolio"}, {"get_attribute('portfolio',['gains'],'')": "portfolio"}, {"sort('portfolio','gains','desc')": "portfolio"}]
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 10per_device_eval_batch_size
: 10num_train_epochs
: 6multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 10per_device_eval_batch_size
: 10per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 6max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | cosine_map@100 |
---|---|---|
0.0274 | 2 | 0.0136 |
0.0548 | 4 | 0.0137 |
0.0822 | 6 | 0.0139 |
0.1096 | 8 | 0.0142 |
0.1370 | 10 | 0.0145 |
0.1644 | 12 | 0.0144 |
0.1918 | 14 | 0.0147 |
0.2192 | 16 | 0.0151 |
0.2466 | 18 | 0.0153 |
0.2740 | 20 | 0.0158 |
0.3014 | 22 | 0.0165 |
0.3288 | 24 | 0.0163 |
0.3562 | 26 | 0.0167 |
0.3836 | 28 | 0.0171 |
0.4110 | 30 | 0.0175 |
0.4384 | 32 | 0.0177 |
0.4658 | 34 | 0.0180 |
0.4932 | 36 | 0.0183 |
0.5205 | 38 | 0.0185 |
0.5479 | 40 | 0.0186 |
0.5753 | 42 | 0.0186 |
0.6027 | 44 | 0.0186 |
0.6301 | 46 | 0.0186 |
0.6575 | 48 | 0.0187 |
0.6849 | 50 | 0.0189 |
0.7123 | 52 | 0.0190 |
0.7397 | 54 | 0.0189 |
0.7671 | 56 | 0.0188 |
0.7945 | 58 | 0.0189 |
0.8219 | 60 | 0.0192 |
0.8493 | 62 | 0.0193 |
0.8767 | 64 | 0.0194 |
0.9041 | 66 | 0.0194 |
0.9315 | 68 | 0.0197 |
0.9589 | 70 | 0.0200 |
0.9863 | 72 | 0.0201 |
1.0 | 73 | 0.0202 |
1.0137 | 74 | 0.0203 |
1.0411 | 76 | 0.0202 |
1.0685 | 78 | 0.0203 |
1.0959 | 80 | 0.0205 |
1.1233 | 82 | 0.0207 |
1.1507 | 84 | 0.0207 |
1.1781 | 86 | 0.0206 |
1.2055 | 88 | 0.0205 |
1.2329 | 90 | 0.0205 |
1.2603 | 92 | 0.0205 |
1.2877 | 94 | 0.0204 |
1.3151 | 96 | 0.0204 |
1.3425 | 98 | 0.0205 |
1.3699 | 100 | 0.0205 |
1.3973 | 102 | 0.0205 |
1.4247 | 104 | 0.0205 |
1.4521 | 106 | 0.0204 |
1.4795 | 108 | 0.0205 |
1.5068 | 110 | 0.0208 |
1.5342 | 112 | 0.0206 |
1.5616 | 114 | 0.0205 |
1.5890 | 116 | 0.0206 |
1.6164 | 118 | 0.0205 |
1.6438 | 120 | 0.0205 |
1.6712 | 122 | 0.0205 |
1.6986 | 124 | 0.0207 |
1.7260 | 126 | 0.0207 |
1.7534 | 128 | 0.0207 |
1.7808 | 130 | 0.0205 |
1.8082 | 132 | 0.0206 |
1.8356 | 134 | 0.0208 |
1.8630 | 136 | 0.0206 |
1.8904 | 138 | 0.0206 |
1.9178 | 140 | 0.0206 |
1.9452 | 142 | 0.0205 |
1.9726 | 144 | 0.0206 |
2.0 | 146 | 0.0207 |
2.0274 | 148 | 0.0209 |
Framework Versions
- Python: 3.10.9
- Sentence Transformers: 3.0.1
- Transformers: 4.44.0
- PyTorch: 2.4.0+cu121
- Accelerate: 0.33.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 18
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for magnifi/bge-small-en-v1.5-ft-orc-0806
Base model
BAAI/bge-small-en-v1.5Evaluation results
- Cosine Accuracy@1 on Unknownself-reported0.664
- Cosine Accuracy@3 on Unknownself-reported0.829
- Cosine Accuracy@5 on Unknownself-reported0.863
- Cosine Accuracy@10 on Unknownself-reported0.918
- Cosine Precision@1 on Unknownself-reported0.664
- Cosine Precision@3 on Unknownself-reported0.276
- Cosine Precision@5 on Unknownself-reported0.173
- Cosine Precision@10 on Unknownself-reported0.092
- Cosine Recall@1 on Unknownself-reported0.018
- Cosine Recall@3 on Unknownself-reported0.023