fliou2 commited on
Commit
b692270
1 Parent(s): 4decb66

Upload folder using huggingface_hub

Browse files
1_Pooling/config.json CHANGED
@@ -3,5 +3,8 @@
3
  "pooling_mode_cls_token": true,
4
  "pooling_mode_mean_tokens": false,
5
  "pooling_mode_max_tokens": false,
6
- "pooling_mode_mean_sqrt_len_tokens": false
 
 
 
7
  }
 
3
  "pooling_mode_cls_token": true,
4
  "pooling_mode_mean_tokens": false,
5
  "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
  }
README.md CHANGED
@@ -1,91 +1,644 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  pipeline_tag: sentence-similarity
3
  tags:
4
  - sentence-transformers
5
- - feature-extraction
6
  - sentence-similarity
7
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  ---
9
 
10
- # {MODEL_NAME}
 
 
11
 
12
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
13
 
14
- <!--- Describe your model here -->
 
 
 
 
 
 
 
 
15
 
16
- ## Usage (Sentence-Transformers)
17
 
18
- Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
 
 
 
 
19
 
20
  ```
21
- pip install -U sentence-transformers
 
 
 
 
22
  ```
23
 
24
- Then you can use the model like this:
 
 
 
 
 
 
 
 
25
 
 
26
  ```python
27
  from sentence_transformers import SentenceTransformer
28
- sentences = ["This is an example sentence", "Each sentence is converted"]
29
 
30
- model = SentenceTransformer('{MODEL_NAME}')
 
 
 
 
 
 
 
31
  embeddings = model.encode(sentences)
32
- print(embeddings)
 
 
 
 
 
 
33
  ```
34
 
 
 
35
 
 
36
 
37
- ## Evaluation Results
 
38
 
39
- <!--- Describe how your model was evaluated -->
 
40
 
41
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
42
 
 
43
 
44
- ## Training
45
- The model was trained with the parameters:
46
 
47
- **DataLoader**:
 
48
 
49
- `torch.utils.data.dataloader.DataLoader` of length 51 with parameters:
50
- ```
51
- {'batch_size': 10, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
52
- ```
53
 
54
- **Loss**:
55
 
56
- `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
57
- ```
58
- {'scale': 20.0, 'similarity_fct': 'cos_sim'}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59
  ```
60
 
61
- Parameters of the fit()-Method:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
  ```
63
- {
64
- "epochs": 10,
65
- "evaluation_steps": 2,
66
- "evaluator": "sentence_transformers.evaluation.InformationRetrievalEvaluator.InformationRetrievalEvaluator",
67
- "max_grad_norm": 1,
68
- "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
69
- "optimizer_params": {
70
- "lr": 2e-05
71
- },
72
- "scheduler": "WarmupLinear",
73
- "steps_per_epoch": null,
74
- "warmup_steps": 51,
75
- "weight_decay": 0.01
76
  }
77
  ```
78
 
 
 
79
 
80
- ## Full Model Architecture
81
- ```
82
- SentenceTransformer(
83
- (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
84
- (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
85
- (2): Normalize()
86
- )
87
- ```
88
 
89
- ## Citing & Authors
 
90
 
91
- <!--- Describe where people can find more information -->
 
 
1
  ---
2
+ base_model: BAAI/bge-small-en-v1.5
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ metrics:
7
+ - cosine_accuracy@1
8
+ - cosine_accuracy@3
9
+ - cosine_accuracy@5
10
+ - cosine_accuracy@10
11
+ - cosine_precision@1
12
+ - cosine_precision@3
13
+ - cosine_precision@5
14
+ - cosine_precision@10
15
+ - cosine_recall@1
16
+ - cosine_recall@3
17
+ - cosine_recall@5
18
+ - cosine_recall@10
19
+ - cosine_ndcg@10
20
+ - cosine_mrr@10
21
+ - cosine_map@100
22
+ - dot_accuracy@1
23
+ - dot_accuracy@3
24
+ - dot_accuracy@5
25
+ - dot_accuracy@10
26
+ - dot_precision@1
27
+ - dot_precision@3
28
+ - dot_precision@5
29
+ - dot_precision@10
30
+ - dot_recall@1
31
+ - dot_recall@3
32
+ - dot_recall@5
33
+ - dot_recall@10
34
+ - dot_ndcg@10
35
+ - dot_mrr@10
36
+ - dot_map@100
37
  pipeline_tag: sentence-similarity
38
  tags:
39
  - sentence-transformers
 
40
  - sentence-similarity
41
+ - feature-extraction
42
+ - generated_from_trainer
43
+ - dataset_size:491
44
+ - loss:MultipleNegativesRankingLoss
45
+ widget:
46
+ - source_sentence: do I have money I vested through [TICKER]
47
+ sentences:
48
+ - '[{"get_portfolio([''brokerName''])": "portfolio"}, {"filter(''portfolio'',''brokerName'',''=='',''Magnifi'')":
49
+ "portfolio"}]'
50
+ - '[{"get_attribute([''<TICKER1>''],[''returns''],''<DATES>'')": "price_<TICKER1>"}]'
51
+ - '[{"get_earnings_announcements([''<TICKER1>''],''<DATES>'')": "<TICKER1>_earnings"}]'
52
+ - source_sentence: Knock Knock!
53
+ sentences:
54
+ - '[{"get_portfolio([''weight''])": "portfolio"}, {"factor_contribution(''portfolio'',''<DATES>'',''sector'',''sector
55
+ retailing'',''portfolio'')": "portfolio"}]'
56
+ - '[{"get_news_articles([''<TICKER1>''],None,None,None)": "news_data_<TICKER1>"}]'
57
+ - '[]'
58
+ - source_sentence: what's the earnings per share of [TICKER]
59
+ sentences:
60
+ - '[{"get_attribute([''<TICKER1>''],[''returns''],''<DATES>'')": "performance_data_<TICKER1>"}]'
61
+ - '[{"get_attribute([''<TICKER1>''],[''earnings per share''],''<DATES>'')": "earnings_per_share_<TICKER1>"}]'
62
+ - '[{"get_portfolio([''weight''])": "portfolio"}, {"factor_contribution(''portfolio'',''<DATES>'',''factor'',''momentum'',''portfolio'')":
63
+ "portfolio"}]'
64
+ - source_sentence: returns of [TICKER] since 2017
65
+ sentences:
66
+ - '[{"get_portfolio([''weight''])": "portfolio"}, {"factor_contribution(''portfolio'',''<DATES>'',''factor'',''volatility'',''returns'')":
67
+ "portfolio"}]'
68
+ - '[{"get_attribute([''<TICKER1>''],[''returns''],''<DATES>'')": "performance_data_<TICKER1>"}]'
69
+ - '[{"get_dictionary_definition([''limit order'', ''market order''])": "definitions"}]'
70
+ - source_sentence: how should I play [TICKER] futures contracts
71
+ sentences:
72
+ - '[]'
73
+ - '[{"get_attribute([''<TICKER1>''],[''returns''],''<DATES>'')": "live_price_<TICKER1>"}]'
74
+ - '[{"get_news_articles(None,None,None,None)": "latest_news_data"}]'
75
+ model-index:
76
+ - name: SentenceTransformer based on BAAI/bge-small-en-v1.5
77
+ results:
78
+ - task:
79
+ type: information-retrieval
80
+ name: Information Retrieval
81
+ dataset:
82
+ name: Unknown
83
+ type: unknown
84
+ metrics:
85
+ - type: cosine_accuracy@1
86
+ value: 0.7191780821917808
87
+ name: Cosine Accuracy@1
88
+ - type: cosine_accuracy@3
89
+ value: 0.9246575342465754
90
+ name: Cosine Accuracy@3
91
+ - type: cosine_accuracy@5
92
+ value: 0.952054794520548
93
+ name: Cosine Accuracy@5
94
+ - type: cosine_accuracy@10
95
+ value: 0.9794520547945206
96
+ name: Cosine Accuracy@10
97
+ - type: cosine_precision@1
98
+ value: 0.7191780821917808
99
+ name: Cosine Precision@1
100
+ - type: cosine_precision@3
101
+ value: 0.3082191780821918
102
+ name: Cosine Precision@3
103
+ - type: cosine_precision@5
104
+ value: 0.19041095890410956
105
+ name: Cosine Precision@5
106
+ - type: cosine_precision@10
107
+ value: 0.09794520547945204
108
+ name: Cosine Precision@10
109
+ - type: cosine_recall@1
110
+ value: 0.019977168949771692
111
+ name: Cosine Recall@1
112
+ - type: cosine_recall@3
113
+ value: 0.02568493150684932
114
+ name: Cosine Recall@3
115
+ - type: cosine_recall@5
116
+ value: 0.02644596651445967
117
+ name: Cosine Recall@5
118
+ - type: cosine_recall@10
119
+ value: 0.02720700152207002
120
+ name: Cosine Recall@10
121
+ - type: cosine_ndcg@10
122
+ value: 0.1886992031917713
123
+ name: Cosine Ndcg@10
124
+ - type: cosine_mrr@10
125
+ value: 0.8171314416177428
126
+ name: Cosine Mrr@10
127
+ - type: cosine_map@100
128
+ value: 0.02272901264767703
129
+ name: Cosine Map@100
130
+ - type: dot_accuracy@1
131
+ value: 0.7191780821917808
132
+ name: Dot Accuracy@1
133
+ - type: dot_accuracy@3
134
+ value: 0.9246575342465754
135
+ name: Dot Accuracy@3
136
+ - type: dot_accuracy@5
137
+ value: 0.952054794520548
138
+ name: Dot Accuracy@5
139
+ - type: dot_accuracy@10
140
+ value: 0.9794520547945206
141
+ name: Dot Accuracy@10
142
+ - type: dot_precision@1
143
+ value: 0.7191780821917808
144
+ name: Dot Precision@1
145
+ - type: dot_precision@3
146
+ value: 0.3082191780821918
147
+ name: Dot Precision@3
148
+ - type: dot_precision@5
149
+ value: 0.19041095890410956
150
+ name: Dot Precision@5
151
+ - type: dot_precision@10
152
+ value: 0.09794520547945204
153
+ name: Dot Precision@10
154
+ - type: dot_recall@1
155
+ value: 0.019977168949771692
156
+ name: Dot Recall@1
157
+ - type: dot_recall@3
158
+ value: 0.02568493150684932
159
+ name: Dot Recall@3
160
+ - type: dot_recall@5
161
+ value: 0.02644596651445967
162
+ name: Dot Recall@5
163
+ - type: dot_recall@10
164
+ value: 0.02720700152207002
165
+ name: Dot Recall@10
166
+ - type: dot_ndcg@10
167
+ value: 0.1886992031917713
168
+ name: Dot Ndcg@10
169
+ - type: dot_mrr@10
170
+ value: 0.8171314416177428
171
+ name: Dot Mrr@10
172
+ - type: dot_map@100
173
+ value: 0.02272901264767703
174
+ name: Dot Map@100
175
  ---
176
 
177
+ # SentenceTransformer based on BAAI/bge-small-en-v1.5
178
+
179
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
180
 
181
+ ## Model Details
182
 
183
+ ### Model Description
184
+ - **Model Type:** Sentence Transformer
185
+ - **Base model:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) <!-- at revision 5c38ec7c405ec4b44b94cc5a9bb96e735b38267a -->
186
+ - **Maximum Sequence Length:** 512 tokens
187
+ - **Output Dimensionality:** 384 tokens
188
+ - **Similarity Function:** Cosine Similarity
189
+ <!-- - **Training Dataset:** Unknown -->
190
+ <!-- - **Language:** Unknown -->
191
+ <!-- - **License:** Unknown -->
192
 
193
+ ### Model Sources
194
 
195
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
196
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
197
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
198
+
199
+ ### Full Model Architecture
200
 
201
  ```
202
+ SentenceTransformer(
203
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
204
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
205
+ (2): Normalize()
206
+ )
207
  ```
208
 
209
+ ## Usage
210
+
211
+ ### Direct Usage (Sentence Transformers)
212
+
213
+ First install the Sentence Transformers library:
214
+
215
+ ```bash
216
+ pip install -U sentence-transformers
217
+ ```
218
 
219
+ Then you can load this model and run inference.
220
  ```python
221
  from sentence_transformers import SentenceTransformer
 
222
 
223
+ # Download from the 🤗 Hub
224
+ model = SentenceTransformer("sentence_transformers_model_id")
225
+ # Run inference
226
+ sentences = [
227
+ 'how should I play [TICKER] futures contracts',
228
+ '[]',
229
+ '[{"get_attribute([\'<TICKER1>\'],[\'returns\'],\'<DATES>\')": "live_price_<TICKER1>"}]',
230
+ ]
231
  embeddings = model.encode(sentences)
232
+ print(embeddings.shape)
233
+ # [3, 384]
234
+
235
+ # Get the similarity scores for the embeddings
236
+ similarities = model.similarity(embeddings, embeddings)
237
+ print(similarities.shape)
238
+ # [3, 3]
239
  ```
240
 
241
+ <!--
242
+ ### Direct Usage (Transformers)
243
 
244
+ <details><summary>Click to see the direct usage in Transformers</summary>
245
 
246
+ </details>
247
+ -->
248
 
249
+ <!--
250
+ ### Downstream Usage (Sentence Transformers)
251
 
252
+ You can finetune this model on your own dataset.
253
 
254
+ <details><summary>Click to expand</summary>
255
 
256
+ </details>
257
+ -->
258
 
259
+ <!--
260
+ ### Out-of-Scope Use
261
 
262
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
263
+ -->
 
 
264
 
265
+ ## Evaluation
266
 
267
+ ### Metrics
268
+
269
+ #### Information Retrieval
270
+
271
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
272
+
273
+ | Metric | Value |
274
+ |:--------------------|:-----------|
275
+ | cosine_accuracy@1 | 0.7192 |
276
+ | cosine_accuracy@3 | 0.9247 |
277
+ | cosine_accuracy@5 | 0.9521 |
278
+ | cosine_accuracy@10 | 0.9795 |
279
+ | cosine_precision@1 | 0.7192 |
280
+ | cosine_precision@3 | 0.3082 |
281
+ | cosine_precision@5 | 0.1904 |
282
+ | cosine_precision@10 | 0.0979 |
283
+ | cosine_recall@1 | 0.02 |
284
+ | cosine_recall@3 | 0.0257 |
285
+ | cosine_recall@5 | 0.0264 |
286
+ | cosine_recall@10 | 0.0272 |
287
+ | cosine_ndcg@10 | 0.1887 |
288
+ | cosine_mrr@10 | 0.8171 |
289
+ | **cosine_map@100** | **0.0227** |
290
+ | dot_accuracy@1 | 0.7192 |
291
+ | dot_accuracy@3 | 0.9247 |
292
+ | dot_accuracy@5 | 0.9521 |
293
+ | dot_accuracy@10 | 0.9795 |
294
+ | dot_precision@1 | 0.7192 |
295
+ | dot_precision@3 | 0.3082 |
296
+ | dot_precision@5 | 0.1904 |
297
+ | dot_precision@10 | 0.0979 |
298
+ | dot_recall@1 | 0.02 |
299
+ | dot_recall@3 | 0.0257 |
300
+ | dot_recall@5 | 0.0264 |
301
+ | dot_recall@10 | 0.0272 |
302
+ | dot_ndcg@10 | 0.1887 |
303
+ | dot_mrr@10 | 0.8171 |
304
+ | dot_map@100 | 0.0227 |
305
+
306
+ <!--
307
+ ## Bias, Risks and Limitations
308
+
309
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
310
+ -->
311
+
312
+ <!--
313
+ ### Recommendations
314
+
315
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
316
+ -->
317
+
318
+ ## Training Details
319
+
320
+ ### Training Dataset
321
+
322
+ #### Unnamed Dataset
323
+
324
+
325
+ * Size: 491 training samples
326
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
327
+ * Approximate statistics based on the first 1000 samples:
328
+ | | sentence_0 | sentence_1 |
329
+ |:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
330
+ | type | string | string |
331
+ | details | <ul><li>min: 4 tokens</li><li>mean: 11.9 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 67.55 tokens</li><li>max: 194 tokens</li></ul> |
332
+ * Samples:
333
+ | sentence_0 | sentence_1 |
334
+ |:------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------|
335
+ | <code>Profitability of [TICKER]</code> | <code>[{"get_attribute(['<TICKER1>'],['cash flow profitability'],'<DATES>')": "profitability_<TICKER1>"}]</code> |
336
+ | <code>[TICKER] momentum</code> | <code>[{"get_attribute(['<TICKER1>'],['momentum'],'<DATES>')": "momentum_<TICKER1>"}]</code> |
337
+ | <code>what was the total return of [TICKER] for 2023</code> | <code>[{"get_attribute(['<TICKER1>'],['returns'],'<DATES>')": "performance_data_<TICKER1>"}]</code> |
338
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
339
+ ```json
340
+ {
341
+ "scale": 20.0,
342
+ "similarity_fct": "cos_sim"
343
+ }
344
  ```
345
 
346
+ ### Training Hyperparameters
347
+ #### Non-Default Hyperparameters
348
+
349
+ - `eval_strategy`: steps
350
+ - `per_device_train_batch_size`: 10
351
+ - `per_device_eval_batch_size`: 10
352
+ - `num_train_epochs`: 6
353
+ - `multi_dataset_batch_sampler`: round_robin
354
+
355
+ #### All Hyperparameters
356
+ <details><summary>Click to expand</summary>
357
+
358
+ - `overwrite_output_dir`: False
359
+ - `do_predict`: False
360
+ - `eval_strategy`: steps
361
+ - `prediction_loss_only`: True
362
+ - `per_device_train_batch_size`: 10
363
+ - `per_device_eval_batch_size`: 10
364
+ - `per_gpu_train_batch_size`: None
365
+ - `per_gpu_eval_batch_size`: None
366
+ - `gradient_accumulation_steps`: 1
367
+ - `eval_accumulation_steps`: None
368
+ - `torch_empty_cache_steps`: None
369
+ - `learning_rate`: 5e-05
370
+ - `weight_decay`: 0.0
371
+ - `adam_beta1`: 0.9
372
+ - `adam_beta2`: 0.999
373
+ - `adam_epsilon`: 1e-08
374
+ - `max_grad_norm`: 1
375
+ - `num_train_epochs`: 6
376
+ - `max_steps`: -1
377
+ - `lr_scheduler_type`: linear
378
+ - `lr_scheduler_kwargs`: {}
379
+ - `warmup_ratio`: 0.0
380
+ - `warmup_steps`: 0
381
+ - `log_level`: passive
382
+ - `log_level_replica`: warning
383
+ - `log_on_each_node`: True
384
+ - `logging_nan_inf_filter`: True
385
+ - `save_safetensors`: True
386
+ - `save_on_each_node`: False
387
+ - `save_only_model`: False
388
+ - `restore_callback_states_from_checkpoint`: False
389
+ - `no_cuda`: False
390
+ - `use_cpu`: False
391
+ - `use_mps_device`: False
392
+ - `seed`: 42
393
+ - `data_seed`: None
394
+ - `jit_mode_eval`: False
395
+ - `use_ipex`: False
396
+ - `bf16`: False
397
+ - `fp16`: False
398
+ - `fp16_opt_level`: O1
399
+ - `half_precision_backend`: auto
400
+ - `bf16_full_eval`: False
401
+ - `fp16_full_eval`: False
402
+ - `tf32`: None
403
+ - `local_rank`: 0
404
+ - `ddp_backend`: None
405
+ - `tpu_num_cores`: None
406
+ - `tpu_metrics_debug`: False
407
+ - `debug`: []
408
+ - `dataloader_drop_last`: False
409
+ - `dataloader_num_workers`: 0
410
+ - `dataloader_prefetch_factor`: None
411
+ - `past_index`: -1
412
+ - `disable_tqdm`: False
413
+ - `remove_unused_columns`: True
414
+ - `label_names`: None
415
+ - `load_best_model_at_end`: False
416
+ - `ignore_data_skip`: False
417
+ - `fsdp`: []
418
+ - `fsdp_min_num_params`: 0
419
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
420
+ - `fsdp_transformer_layer_cls_to_wrap`: None
421
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
422
+ - `deepspeed`: None
423
+ - `label_smoothing_factor`: 0.0
424
+ - `optim`: adamw_torch
425
+ - `optim_args`: None
426
+ - `adafactor`: False
427
+ - `group_by_length`: False
428
+ - `length_column_name`: length
429
+ - `ddp_find_unused_parameters`: None
430
+ - `ddp_bucket_cap_mb`: None
431
+ - `ddp_broadcast_buffers`: False
432
+ - `dataloader_pin_memory`: True
433
+ - `dataloader_persistent_workers`: False
434
+ - `skip_memory_metrics`: True
435
+ - `use_legacy_prediction_loop`: False
436
+ - `push_to_hub`: False
437
+ - `resume_from_checkpoint`: None
438
+ - `hub_model_id`: None
439
+ - `hub_strategy`: every_save
440
+ - `hub_private_repo`: False
441
+ - `hub_always_push`: False
442
+ - `gradient_checkpointing`: False
443
+ - `gradient_checkpointing_kwargs`: None
444
+ - `include_inputs_for_metrics`: False
445
+ - `eval_do_concat_batches`: True
446
+ - `fp16_backend`: auto
447
+ - `push_to_hub_model_id`: None
448
+ - `push_to_hub_organization`: None
449
+ - `mp_parameters`:
450
+ - `auto_find_batch_size`: False
451
+ - `full_determinism`: False
452
+ - `torchdynamo`: None
453
+ - `ray_scope`: last
454
+ - `ddp_timeout`: 1800
455
+ - `torch_compile`: False
456
+ - `torch_compile_backend`: None
457
+ - `torch_compile_mode`: None
458
+ - `dispatch_batches`: None
459
+ - `split_batches`: None
460
+ - `include_tokens_per_second`: False
461
+ - `include_num_input_tokens_seen`: False
462
+ - `neftune_noise_alpha`: None
463
+ - `optim_target_modules`: None
464
+ - `batch_eval_metrics`: False
465
+ - `eval_on_start`: False
466
+ - `eval_use_gather_object`: False
467
+ - `batch_sampler`: batch_sampler
468
+ - `multi_dataset_batch_sampler`: round_robin
469
+
470
+ </details>
471
+
472
+ ### Training Logs
473
+ <details><summary>Click to expand</summary>
474
+
475
+ | Epoch | Step | cosine_map@100 |
476
+ |:------:|:----:|:--------------:|
477
+ | 0.04 | 2 | 0.0137 |
478
+ | 0.08 | 4 | 0.0137 |
479
+ | 0.12 | 6 | 0.0138 |
480
+ | 0.16 | 8 | 0.0142 |
481
+ | 0.2 | 10 | 0.0144 |
482
+ | 0.24 | 12 | 0.0147 |
483
+ | 0.28 | 14 | 0.0149 |
484
+ | 0.32 | 16 | 0.0151 |
485
+ | 0.36 | 18 | 0.0155 |
486
+ | 0.4 | 20 | 0.0166 |
487
+ | 0.44 | 22 | 0.0170 |
488
+ | 0.48 | 24 | 0.0174 |
489
+ | 0.52 | 26 | 0.0179 |
490
+ | 0.56 | 28 | 0.0181 |
491
+ | 0.6 | 30 | 0.0184 |
492
+ | 0.64 | 32 | 0.0186 |
493
+ | 0.68 | 34 | 0.0189 |
494
+ | 0.72 | 36 | 0.0191 |
495
+ | 0.76 | 38 | 0.0192 |
496
+ | 0.8 | 40 | 0.0195 |
497
+ | 0.84 | 42 | 0.0195 |
498
+ | 0.88 | 44 | 0.0195 |
499
+ | 0.92 | 46 | 0.0195 |
500
+ | 0.96 | 48 | 0.0196 |
501
+ | 1.0 | 50 | 0.0197 |
502
+ | 1.04 | 52 | 0.0196 |
503
+ | 1.08 | 54 | 0.0198 |
504
+ | 1.12 | 56 | 0.0200 |
505
+ | 1.16 | 58 | 0.0202 |
506
+ | 1.2 | 60 | 0.0202 |
507
+ | 1.24 | 62 | 0.0205 |
508
+ | 1.28 | 64 | 0.0206 |
509
+ | 1.32 | 66 | 0.0207 |
510
+ | 1.3600 | 68 | 0.0208 |
511
+ | 1.4 | 70 | 0.0208 |
512
+ | 1.44 | 72 | 0.0209 |
513
+ | 1.48 | 74 | 0.0210 |
514
+ | 1.52 | 76 | 0.0211 |
515
+ | 1.56 | 78 | 0.0211 |
516
+ | 1.6 | 80 | 0.0209 |
517
+ | 1.6400 | 82 | 0.0210 |
518
+ | 1.6800 | 84 | 0.0209 |
519
+ | 1.72 | 86 | 0.0209 |
520
+ | 1.76 | 88 | 0.0210 |
521
+ | 1.8 | 90 | 0.0211 |
522
+ | 1.8400 | 92 | 0.0211 |
523
+ | 1.88 | 94 | 0.0211 |
524
+ | 1.92 | 96 | 0.0214 |
525
+ | 1.96 | 98 | 0.0216 |
526
+ | 2.0 | 100 | 0.0218 |
527
+ | 2.04 | 102 | 0.0217 |
528
+ | 2.08 | 104 | 0.0217 |
529
+ | 2.12 | 106 | 0.0219 |
530
+ | 2.16 | 108 | 0.0221 |
531
+ | 2.2 | 110 | 0.0219 |
532
+ | 2.24 | 112 | 0.0217 |
533
+ | 2.2800 | 114 | 0.0217 |
534
+ | 2.32 | 116 | 0.0217 |
535
+ | 2.36 | 118 | 0.0218 |
536
+ | 2.4 | 120 | 0.0219 |
537
+ | 2.44 | 122 | 0.0219 |
538
+ | 2.48 | 124 | 0.0219 |
539
+ | 2.52 | 126 | 0.0222 |
540
+ | 2.56 | 128 | 0.0220 |
541
+ | 2.6 | 130 | 0.0221 |
542
+ | 2.64 | 132 | 0.0221 |
543
+ | 2.68 | 134 | 0.0221 |
544
+ | 2.7200 | 136 | 0.0221 |
545
+ | 2.76 | 138 | 0.0222 |
546
+ | 2.8 | 140 | 0.0222 |
547
+ | 2.84 | 142 | 0.0224 |
548
+ | 2.88 | 144 | 0.0224 |
549
+ | 2.92 | 146 | 0.0223 |
550
+ | 2.96 | 148 | 0.0224 |
551
+ | 3.0 | 150 | 0.0223 |
552
+ | 3.04 | 152 | 0.0223 |
553
+ | 3.08 | 154 | 0.0223 |
554
+ | 3.12 | 156 | 0.0223 |
555
+ | 3.16 | 158 | 0.0223 |
556
+ | 3.2 | 160 | 0.0223 |
557
+ | 3.24 | 162 | 0.0223 |
558
+ | 3.2800 | 164 | 0.0223 |
559
+ | 3.32 | 166 | 0.0223 |
560
+ | 3.36 | 168 | 0.0223 |
561
+ | 3.4 | 170 | 0.0223 |
562
+ | 3.44 | 172 | 0.0224 |
563
+ | 3.48 | 174 | 0.0224 |
564
+ | 3.52 | 176 | 0.0225 |
565
+ | 3.56 | 178 | 0.0224 |
566
+ | 3.6 | 180 | 0.0224 |
567
+ | 3.64 | 182 | 0.0224 |
568
+ | 3.68 | 184 | 0.0225 |
569
+ | 3.7200 | 186 | 0.0225 |
570
+ | 3.76 | 188 | 0.0225 |
571
+ | 3.8 | 190 | 0.0225 |
572
+ | 3.84 | 192 | 0.0225 |
573
+ | 3.88 | 194 | 0.0225 |
574
+ | 3.92 | 196 | 0.0226 |
575
+ | 3.96 | 198 | 0.0226 |
576
+ | 4.0 | 200 | 0.0226 |
577
+ | 4.04 | 202 | 0.0226 |
578
+ | 4.08 | 204 | 0.0226 |
579
+ | 4.12 | 206 | 0.0226 |
580
+ | 4.16 | 208 | 0.0225 |
581
+ | 4.2 | 210 | 0.0225 |
582
+ | 4.24 | 212 | 0.0225 |
583
+ | 4.28 | 214 | 0.0225 |
584
+ | 4.32 | 216 | 0.0225 |
585
+ | 4.36 | 218 | 0.0226 |
586
+ | 4.4 | 220 | 0.0227 |
587
+
588
+ </details>
589
+
590
+ ### Framework Versions
591
+ - Python: 3.10.9
592
+ - Sentence Transformers: 3.0.1
593
+ - Transformers: 4.44.0
594
+ - PyTorch: 2.4.0+cu121
595
+ - Accelerate: 0.33.0
596
+ - Datasets: 2.20.0
597
+ - Tokenizers: 0.19.1
598
+
599
+ ## Citation
600
+
601
+ ### BibTeX
602
+
603
+ #### Sentence Transformers
604
+ ```bibtex
605
+ @inproceedings{reimers-2019-sentence-bert,
606
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
607
+ author = "Reimers, Nils and Gurevych, Iryna",
608
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
609
+ month = "11",
610
+ year = "2019",
611
+ publisher = "Association for Computational Linguistics",
612
+ url = "https://arxiv.org/abs/1908.10084",
613
+ }
614
  ```
615
+
616
+ #### MultipleNegativesRankingLoss
617
+ ```bibtex
618
+ @misc{henderson2017efficient,
619
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
620
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
621
+ year={2017},
622
+ eprint={1705.00652},
623
+ archivePrefix={arXiv},
624
+ primaryClass={cs.CL}
 
 
 
625
  }
626
  ```
627
 
628
+ <!--
629
+ ## Glossary
630
 
631
+ *Clearly define terms in order to be accessible across audiences.*
632
+ -->
633
+
634
+ <!--
635
+ ## Model Card Authors
636
+
637
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
638
+ -->
639
 
640
+ <!--
641
+ ## Model Card Contact
642
 
643
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
644
+ -->
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "/home/ubuntu/.cache/torch/sentence_transformers/BAAI_bge-small-en-v1.5/",
3
  "architectures": [
4
  "BertModel"
5
  ],
@@ -24,7 +24,7 @@
24
  "pad_token_id": 0,
25
  "position_embedding_type": "absolute",
26
  "torch_dtype": "float32",
27
- "transformers_version": "4.43.4",
28
  "type_vocab_size": 2,
29
  "use_cache": true,
30
  "vocab_size": 30522
 
1
  {
2
+ "_name_or_path": "BAAI/bge-small-en-v1.5",
3
  "architectures": [
4
  "BertModel"
5
  ],
 
24
  "pad_token_id": 0,
25
  "position_embedding_type": "absolute",
26
  "torch_dtype": "float32",
27
+ "transformers_version": "4.44.0",
28
  "type_vocab_size": 2,
29
  "use_cache": true,
30
  "vocab_size": 30522
config_sentence_transformers.json CHANGED
@@ -1,7 +1,10 @@
1
  {
2
  "__version__": {
3
- "sentence_transformers": "2.2.2",
4
- "transformers": "4.28.1",
5
- "pytorch": "1.13.0+cu117"
6
- }
 
 
 
7
  }
 
1
  {
2
  "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.44.0",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
  }
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:09987882b72f51c0ceeabc7a19a63db85f13eb52fdbeea85af204cfb06f845ec
3
  size 133462128
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:076fc63febba0cc87ba58c5dd73d33fa4030cd3f99545e729c84cd9aec36a329
3
  size 133462128