metadata
base_model: BAAI/bge-small-en-v1.5
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:491
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: do I have money I vested through [TICKER]
sentences:
- >-
[{"get_portfolio(['brokerName'])": "portfolio"},
{"filter('portfolio','brokerName','==','Magnifi')": "portfolio"}]
- >-
[{"get_attribute(['<TICKER1>'],['returns'],'<DATES>')":
"price_<TICKER1>"}]
- >-
[{"get_earnings_announcements(['<TICKER1>'],'<DATES>')":
"<TICKER1>_earnings"}]
- source_sentence: Knock Knock!
sentences:
- >-
[{"get_portfolio(['weight'])": "portfolio"},
{"factor_contribution('portfolio','<DATES>','sector','sector
retailing','portfolio')": "portfolio"}]
- >-
[{"get_news_articles(['<TICKER1>'],None,None,None)":
"news_data_<TICKER1>"}]
- '[]'
- source_sentence: what's the earnings per share of [TICKER]
sentences:
- >-
[{"get_attribute(['<TICKER1>'],['returns'],'<DATES>')":
"performance_data_<TICKER1>"}]
- >-
[{"get_attribute(['<TICKER1>'],['earnings per share'],'<DATES>')":
"earnings_per_share_<TICKER1>"}]
- >-
[{"get_portfolio(['weight'])": "portfolio"},
{"factor_contribution('portfolio','<DATES>','factor','momentum','portfolio')":
"portfolio"}]
- source_sentence: returns of [TICKER] since 2017
sentences:
- >-
[{"get_portfolio(['weight'])": "portfolio"},
{"factor_contribution('portfolio','<DATES>','factor','volatility','returns')":
"portfolio"}]
- >-
[{"get_attribute(['<TICKER1>'],['returns'],'<DATES>')":
"performance_data_<TICKER1>"}]
- >-
[{"get_dictionary_definition(['limit order', 'market order'])":
"definitions"}]
- source_sentence: how should I play [TICKER] futures contracts
sentences:
- '[]'
- >-
[{"get_attribute(['<TICKER1>'],['returns'],'<DATES>')":
"live_price_<TICKER1>"}]
- '[{"get_news_articles(None,None,None,None)": "latest_news_data"}]'
model-index:
- name: SentenceTransformer based on BAAI/bge-small-en-v1.5
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy@1
value: 0.7191780821917808
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9246575342465754
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.952054794520548
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9794520547945206
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7191780821917808
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3082191780821918
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19041095890410956
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09794520547945204
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.019977168949771692
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.02568493150684932
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.02644596651445967
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.02720700152207002
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.1886992031917713
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8171314416177428
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.02272901264767703
name: Cosine Map@100
- type: dot_accuracy@1
value: 0.7191780821917808
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.9246575342465754
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.952054794520548
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.9794520547945206
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.7191780821917808
name: Dot Precision@1
- type: dot_precision@3
value: 0.3082191780821918
name: Dot Precision@3
- type: dot_precision@5
value: 0.19041095890410956
name: Dot Precision@5
- type: dot_precision@10
value: 0.09794520547945204
name: Dot Precision@10
- type: dot_recall@1
value: 0.019977168949771692
name: Dot Recall@1
- type: dot_recall@3
value: 0.02568493150684932
name: Dot Recall@3
- type: dot_recall@5
value: 0.02644596651445967
name: Dot Recall@5
- type: dot_recall@10
value: 0.02720700152207002
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.1886992031917713
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.8171314416177428
name: Dot Mrr@10
- type: dot_map@100
value: 0.02272901264767703
name: Dot Map@100
SentenceTransformer based on BAAI/bge-small-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-small-en-v1.5. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-small-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'how should I play [TICKER] futures contracts',
'[]',
'[{"get_attribute([\'<TICKER1>\'],[\'returns\'],\'<DATES>\')": "live_price_<TICKER1>"}]',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.7192 |
cosine_accuracy@3 | 0.9247 |
cosine_accuracy@5 | 0.9521 |
cosine_accuracy@10 | 0.9795 |
cosine_precision@1 | 0.7192 |
cosine_precision@3 | 0.3082 |
cosine_precision@5 | 0.1904 |
cosine_precision@10 | 0.0979 |
cosine_recall@1 | 0.02 |
cosine_recall@3 | 0.0257 |
cosine_recall@5 | 0.0264 |
cosine_recall@10 | 0.0272 |
cosine_ndcg@10 | 0.1887 |
cosine_mrr@10 | 0.8171 |
cosine_map@100 | 0.0227 |
dot_accuracy@1 | 0.7192 |
dot_accuracy@3 | 0.9247 |
dot_accuracy@5 | 0.9521 |
dot_accuracy@10 | 0.9795 |
dot_precision@1 | 0.7192 |
dot_precision@3 | 0.3082 |
dot_precision@5 | 0.1904 |
dot_precision@10 | 0.0979 |
dot_recall@1 | 0.02 |
dot_recall@3 | 0.0257 |
dot_recall@5 | 0.0264 |
dot_recall@10 | 0.0272 |
dot_ndcg@10 | 0.1887 |
dot_mrr@10 | 0.8171 |
dot_map@100 | 0.0227 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 491 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 4 tokens
- mean: 11.9 tokens
- max: 26 tokens
- min: 4 tokens
- mean: 67.55 tokens
- max: 194 tokens
- Samples:
sentence_0 sentence_1 Profitability of [TICKER]
[{"get_attribute([''],['cash flow profitability'],'')": "profitability_"}]
[TICKER] momentum
[{"get_attribute([''],['momentum'],'')": "momentum_"}]
what was the total return of [TICKER] for 2023
[{"get_attribute([''],['returns'],'')": "performance_data_"}]
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 10per_device_eval_batch_size
: 10num_train_epochs
: 6multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 10per_device_eval_batch_size
: 10per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 6max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Click to expand
Epoch | Step | cosine_map@100 |
---|---|---|
0.04 | 2 | 0.0137 |
0.08 | 4 | 0.0137 |
0.12 | 6 | 0.0138 |
0.16 | 8 | 0.0142 |
0.2 | 10 | 0.0144 |
0.24 | 12 | 0.0147 |
0.28 | 14 | 0.0149 |
0.32 | 16 | 0.0151 |
0.36 | 18 | 0.0155 |
0.4 | 20 | 0.0166 |
0.44 | 22 | 0.0170 |
0.48 | 24 | 0.0174 |
0.52 | 26 | 0.0179 |
0.56 | 28 | 0.0181 |
0.6 | 30 | 0.0184 |
0.64 | 32 | 0.0186 |
0.68 | 34 | 0.0189 |
0.72 | 36 | 0.0191 |
0.76 | 38 | 0.0192 |
0.8 | 40 | 0.0195 |
0.84 | 42 | 0.0195 |
0.88 | 44 | 0.0195 |
0.92 | 46 | 0.0195 |
0.96 | 48 | 0.0196 |
1.0 | 50 | 0.0197 |
1.04 | 52 | 0.0196 |
1.08 | 54 | 0.0198 |
1.12 | 56 | 0.0200 |
1.16 | 58 | 0.0202 |
1.2 | 60 | 0.0202 |
1.24 | 62 | 0.0205 |
1.28 | 64 | 0.0206 |
1.32 | 66 | 0.0207 |
1.3600 | 68 | 0.0208 |
1.4 | 70 | 0.0208 |
1.44 | 72 | 0.0209 |
1.48 | 74 | 0.0210 |
1.52 | 76 | 0.0211 |
1.56 | 78 | 0.0211 |
1.6 | 80 | 0.0209 |
1.6400 | 82 | 0.0210 |
1.6800 | 84 | 0.0209 |
1.72 | 86 | 0.0209 |
1.76 | 88 | 0.0210 |
1.8 | 90 | 0.0211 |
1.8400 | 92 | 0.0211 |
1.88 | 94 | 0.0211 |
1.92 | 96 | 0.0214 |
1.96 | 98 | 0.0216 |
2.0 | 100 | 0.0218 |
2.04 | 102 | 0.0217 |
2.08 | 104 | 0.0217 |
2.12 | 106 | 0.0219 |
2.16 | 108 | 0.0221 |
2.2 | 110 | 0.0219 |
2.24 | 112 | 0.0217 |
2.2800 | 114 | 0.0217 |
2.32 | 116 | 0.0217 |
2.36 | 118 | 0.0218 |
2.4 | 120 | 0.0219 |
2.44 | 122 | 0.0219 |
2.48 | 124 | 0.0219 |
2.52 | 126 | 0.0222 |
2.56 | 128 | 0.0220 |
2.6 | 130 | 0.0221 |
2.64 | 132 | 0.0221 |
2.68 | 134 | 0.0221 |
2.7200 | 136 | 0.0221 |
2.76 | 138 | 0.0222 |
2.8 | 140 | 0.0222 |
2.84 | 142 | 0.0224 |
2.88 | 144 | 0.0224 |
2.92 | 146 | 0.0223 |
2.96 | 148 | 0.0224 |
3.0 | 150 | 0.0223 |
3.04 | 152 | 0.0223 |
3.08 | 154 | 0.0223 |
3.12 | 156 | 0.0223 |
3.16 | 158 | 0.0223 |
3.2 | 160 | 0.0223 |
3.24 | 162 | 0.0223 |
3.2800 | 164 | 0.0223 |
3.32 | 166 | 0.0223 |
3.36 | 168 | 0.0223 |
3.4 | 170 | 0.0223 |
3.44 | 172 | 0.0224 |
3.48 | 174 | 0.0224 |
3.52 | 176 | 0.0225 |
3.56 | 178 | 0.0224 |
3.6 | 180 | 0.0224 |
3.64 | 182 | 0.0224 |
3.68 | 184 | 0.0225 |
3.7200 | 186 | 0.0225 |
3.76 | 188 | 0.0225 |
3.8 | 190 | 0.0225 |
3.84 | 192 | 0.0225 |
3.88 | 194 | 0.0225 |
3.92 | 196 | 0.0226 |
3.96 | 198 | 0.0226 |
4.0 | 200 | 0.0226 |
4.04 | 202 | 0.0226 |
4.08 | 204 | 0.0226 |
4.12 | 206 | 0.0226 |
4.16 | 208 | 0.0225 |
4.2 | 210 | 0.0225 |
4.24 | 212 | 0.0225 |
4.28 | 214 | 0.0225 |
4.32 | 216 | 0.0225 |
4.36 | 218 | 0.0226 |
4.4 | 220 | 0.0227 |
Framework Versions
- Python: 3.10.9
- Sentence Transformers: 3.0.1
- Transformers: 4.44.0
- PyTorch: 2.4.0+cu121
- Accelerate: 0.33.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}