Edit model card

bert-base-multilingual-cased-finetuned-conllpp

This model is a fine-tuned version of bert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0443
  • Accuracy: 0.9850
  • Precision: 0.9304
  • Recall: 0.9357
  • F1: 0.9330

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 1
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.0456 1.0 3093 0.0455 0.9804 0.9154 0.9097 0.9126
0.0441 2.0 6186 0.0444 0.9846 0.9275 0.9316 0.9296
0.0431 3.0 9279 0.0443 0.9850 0.9304 0.9357 0.9330

Framework versions

  • Transformers 4.43.4
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1
Downloads last month
2
Safetensors
Model size
177M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for malduwais/bert-base-multilingual-cased-finetuned-conllpp

Finetuned
(511)
this model